

REPORT

Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond

Submitted to:

Public Services and Procurement Canada on behalf of Transport Canada

Lizanne Meloche 219 - 800 Burrard Street Vancouver, BC V6Z 2V8

Submitted by:

WSP Canada Inc.

840 Howe Street, #1000, Vancouver, British Columbia, V6Z 2M1 Canada

© His Majesty the King in Right of Canada (2024)

+1 604 685 9381

CA0007867.5135-004-R-Rev0

2 February 2024

Distribution List

e-copy: Public Services and Procurement Canada

e-copy: Transport Canada

e-copy: WSP Canada Inc.

Executive Summary

WSP Canada Inc. (WSP) was retained by Public Services and Procurement Canada (PSPC), on behalf of Transport Canada, to conduct a detailed human health and ecological risk assessment (HHERA) in support of risk management for KELSET (KELSET, also known as Reay Creek) downgradient of KELSET Pond and the Victoria International Airport in British Columbia. WSP understands this HHERA was prepared to facilitate more in-depth engagement with other stakeholders and rightsholders that need to be consulted about the long-term risk management approach for KELSET.

This report was prepared in accordance with the terms and conditions of the Public Works and Government Services Canada Contaminated Sites Risk Assessment Contract with Task Authorizations (CTA) No. EZ897-191436/002/VAN, dated 9 August 2019, the Notice to Readers, and within the scope of work outlined in WSP's document titled "Workplan and Cost Estimate—Post-Remediation Site Visit, Finalization of the Risk Assessment, and Preparation of a Closure Report for KELSET, BC" dated 29 June 2023. Approval to proceed was provided under Task Authorization 700728007 on 30 June 2023, PSPC Project Number R.087575.009, and Transport Canada Project Number 51DJ E239.

KELSET originates at the Victoria International Airport, which is located on federal land leased to the Victoria Airport Authority. The airport has been in operation since 1939, and has included a variety of aircraft manufacturing, electroplating, and other industrial activities operations; stormwater and groundwater influences from these industrial activities drain towards KELSET.

KELSET Pond and KELSET have been the subject of considerable investigation. Sediment remediation and habitat restoration programs were completed by PSPC and Transport Canada for KELSET (the portion within the airport property) in 2019/20 and at KELSET Pond in 2020/21. This current investigation provides the results from supplemental investigation and HHERA for select portions of KELSET below KELSET Pond where intrusive remediation has not been completed. The objective of the HHERA was to assess the potential human health and ecological risks associated with the residual concentrations of airport-related contaminants in KELSET. The Study Area for the HHERA included the portions of KELSET between KELSET Pond to Patricia Bay Highway, and between Lochside Drive to Bazan Bay. The portions of KELSET that flow through privately-owned land (i.e., between Patricia Bay Highway and Lochside Drive) were not part of this assessment.

Based on current and future use of KELSET as a creek located within a forested ravine that runs through municipal parks bordered predominantly by private residential housing, the conclusions resulting from the HHERA within the Study Area are summarized as follows:

Human Health—There were no contaminants of concern identified in surface water, sediment, or riparian soils that would indicate an issue with respect to human receptors who might use the area as an urban park. Data were compared to conservative standards and guidelines (i.e., BC CSR numerical standards and federal guidelines for the protection of human health) and no contaminants of concern were identified. The human health risk assessment ended at the problem formulation stage.

- Terrestrial Ecological Health—There were no contaminants of concern with respect to surface water or soils that would indicate that risks to wildlife would be present. BC CSR numerical soil standards and federal guidelines for the protection of soil invertebrates and plants (urban park land use) were used for this screening as a reality check that if the soil concentrations were lower than the applicable criteria, it would be highly unlikely that intrusive remediation of riparian soils would be needed. The terrestrial ecological risk assessment ended at the problem formulation stage.
- Aquatic Ecological Health—Several metals (i.e., cadmium, chromium, copper, and zinc) were identified as contaminants of concern in sediment or surface water, and therefore, the aquatic ecological risk assessment proceeded to a quantitative risk analysis. This risk analysis used a weight-of-evidence approach where the data about total metal concentrations were supplemented by information about bioavailability (peeper chemistry) and effects (sediment toxicity testing, elutriate toxicity testing). Benthic community analysis is another commonly used line of evidence but was not considered for KELSET because any sampling would have been conducted after a significant release by a third party that would presumably have caused adverse effects to aquatic organisms. Each individual line of evidence was discussed individually, but as an overall narrative, WSP concludes that risks to aquatic organisms from historical contamination associated with the industrial activities at the airport are low.

WSP has a high degree of confidence in the conclusions of the HHERA but notes the following areas of uncertainty:

- Human Health—The key area of uncertainty with respect to human health relates to whether a park user is the appropriate receptor to evaluate the risks that may be important to rightsholders or stakeholders. We note that the default assumption is that the riparian areas of KELSET are not being used as a source of food, which is consistent with urban park land use, but we appreciate that there may be alternative land uses that the custodial agency and rightsholders may agree should be evaluated.
- Terrestrial Ecological Health—Although soil concentrations throughout the riparian areas of KELSET were lower than the urban park land use standards and were also lower than the agricultural standards (which includes a bioaccumulation check for uptake by plants to protect livestock), we recognize that cadmium can bioaccumulate in plants and soil invertebrates, and there is not currently a specific risk calculation to show that bioaccumulation is in fact negligible. Stakeholders and rightsholders may have specific receptors that they would wish to see reflected in a food chain model. However, our observation is that it is important to have alignment about how a wildlife risk assessment would be used to help make informed site management decisions before initiating that type of analysis.
- Aquatic Ecological Health—The key uncertainty for aquatic ecological health is similar to that for terrestrial ecological health in that the uptake of cadmium (and to a lessor extent, chromium) has not been directly measured, and therefore, it is not possible to complete a quantitative risk analysis for semi-aquatic wildlife pathways. The finding from the sediment peepers (and surface water) that cadmium and chromium are not fluxing into the overlying water suggests that bioaccumulation may be limited, but direct evidence for that pathway is not currently available.

As a result of the uncertainties identified above, WSP presented the results of the draft HHERA to the WSÁNEĆ Leadership Council (WLC) Technical Advisory Committee during a virtual meeting held on 19 January 2023. In addition to presenting the objectives, methods, and results of the draft HHERA, WSP described the uncertainties with the assessment and requested input into future risk assessment activities at KELSET, if required. During the engagement meeting, the WLC expressed concerns with bioaccumulation of contaminants/pollutants into food items and with cumulative effects on food sources/food security. Based on the feedback received during the meeting, the WLC Technical Advisory Committee had no concerns with the results of the draft HHERA, and the HHERA was finalized (this document).

Notice to Readers

This report was prepared in accordance with the terms and conditions of the Public Works and Government Services Canada Contaminated Sites Risk Assessment Contract with Task Authorizations (CTA) No. EZ897-191436/002/VAN, dated 9 August 2019, and within the scope of work outlined in WSP's document titled "Workplan and Cost Estimate—Post-Remediation Site Visit, Finalization of the Risk Assessment, and Preparation of a Closure Report for KELSET, BC" dated 29 June 2023. Approval to proceed was provided under Task Authorization 700728009 on 30 June 2023, PSPC Project Number R.087575.009, and Transport Canada Project Number 51DJ E239.

The inferences concerning the Site conditions contained in this report are based on information obtained during the assessment conducted by WSP personnel and are based solely on the condition of the property at the time of the investigation timeline, as described in this report.

This report was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site (KELSET), WSP has relied in good faith on information provided. We accept no responsibility for any deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The recommendations documented in this report have been prepared for the specific application to this project and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time and should be reviewed with time.

If new information is discovered during future work, the conclusions of this report should be re-evaluated and the report amended, as required, prior to any reliance upon the information presented herein.

Table of Contents

1.0	INTRODUCTION		
	1.1	Project Context and Objectives1	
	1.2	Report Organization2	
	1.3	Regulatory Framework2	
	1.3.1	Provincial Criteria2	
	1.3.2	Federal Guidelines	
	1.3.3	Risk Assessment Guidance and Framework4	
2.0	SITE	INFORMATION	
	2.1	Site Context	
	2.2	Summary of Previous Investigations7	
3.0	PROE	BLEM FORMULATION10	
	3.1	Focus on Metals10	
	3.2	Human Health Problem Formulation11	
	3.2.1	Identification of Potential Human Receptors11	
	3.2.2	Identification of Potential Exposure Pathways11	
	3.2.3	Identification of Contaminants of Potential Concern12	
	3.2.4	Human Health Conceptual Exposure Model14	
	3.3	Ecological Problem Formulation16	
	3.3.1	Identification of Potential Ecological Receptors16	
	3.3.2	Identification of Potential Exposure Pathways16	
	3.3.3	Identification of Contaminants of Potential Concern17	
	3.3.4	Ecological Conceptual Exposure Model21	
	3.4	Problem Formulation Conclusions23	
4.0	AQUA	ATIC ECOLOGICAL RISK ASSESSMENT24	
	4.1	Problem Formulation Overview24	
	4.2	Summary of Approach24	

7.0	0 REFERENCES			
6.0	CLOS	URE4(
	5.1	Engagement Activities		
5.0	CONC	CLUSIONS		
	4.7	Sediment Elutriate Toxicity Testing		
	4.6	Sediment Toxicity Testing		
	4.5.3	Results and Interpretation		
	4.5.2	Methods		
	4.5.1	Rationale		
	4.5	Peeper Chemistry (Porewater and Surface Water)		
	4.4.2	Zinc		
	4.4.1	Copper29		
	4.4	Surface Water Chemistry		
	4.3.2	Magnitude and Pattern of Exceedances27		
	4.3.1	Basis of Guidelines		
	4.3	Sediment Chemistry		

TABLES

Table 1: Summary of Previous Investigations at KELSET	7
Table 2: Screening Results for the Metals of Concern in Sediment and Soil for Human Health	12
Table 3: Screening Results for the Total Metals of Concern in Surface Water for Human Health	13
Table 4: Parameters Retained for Secondary Screening for Aquatic Life	18
Table 5: Parameters Retained for Secondary Screening for Terrestrial Plants and Soil Invertebrates	19
Table 6: Secondary Screening of Sediment for Aquatic Life Receptors	19
Table 7: Secondary Screening of Soil for Terrestrial Plants and Soil Invertebrates	20
Table 8: Secondary Screening of Soil and Sediment for Terrestrial and Semi-Aquatic Wildlife	20
Table 9: Summary of Ecological COPCs	21
Table 10: Assessment Endpoints, Lines of Evidence, Measurement Endpoints, and Relevant Risk Decision Criteria for the Aquatic Life Receptors of Concern	25
Table 11: Peeper Summary of Locations and Comments	32

Table 12: Results: Chironomus dilutus Survival and Growth Toxicity Test Results (November 19, 2021)	34
Table 13: Chironomus dilutus Survival and Growth Toxicity Test Results (November 26, 2021)	34
Table 14: Fathead Minnow Survival and Biomass Toxicity Test Results (November 19, 2021)	36

FIGURES

Figure 1: Human Health Conceptual Exposure Model	.15
Figure 2: Ecological Conceptual Exposure Model	.22
Figure 3: Sediment Concentrations of Cadmium, Chromium, and Zinc from Headwater to Estuary Locations	.28
Figure 4: Biotic Ligand Model (from Paquin et al. 2002)	.29
Figure 5: Conceptual Model for Role of Cfree in Risk Assessment (from Meyer et al. 2014)	.31

APPENDICES

APPENDIX A Data Collection Activities Completed by WSP in Fall 2021

APPENDIX B Screened Data Tables

APPENDIX C Listed Species Search

APPENDIX D ProUCL Output

APPENDIX E WLC Engagement Meeting

1.0 INTRODUCTION

WSP Canada Inc. (WSP, formerly Golder Associates Ltd. [Golder]¹) was retained by Public Services and Procurement Canada (PSPC), on behalf of Transport Canada, to conduct a detailed human health and ecological risk assessment (HHERA) in support of risk management for KELSET (also known as Reay Creek) downgradient of KELSET Pond and the Victoria International Airport in British Columbia (shown on Figure 1).

This report was prepared in accordance with the terms and conditions of the Public Works and Government Services Canada Contaminated Sites Risk Assessment Contract with Task Authorizations (CTA) No. EZ897-191436/002/VAN, dated 9 August 2019, the Notice to Readers, and within the scope of work outlined in WSP's document titled "Workplan and Cost Estimate—Post-Remediation Site Visit, Finalization of the Risk Assessment, and Preparation of a Closure Report for KELSET, BC" dated 29 June 2023. Approval to proceed was provided under Task Authorization 700728007 on 30 June 2023, PSPC Project Number R.087575.009, and Transport Canada Project Number 51DJ E239.

1.1 **Project Context and Objectives**

KELSET originates at the Victoria International Airport, which is located on federal land leased to the Victoria Airport Authority. The airport has been in operation since 1939, and historically included a variety of aircraft manufacturing, electroplating, and other industrial activities operations. SLR (2018a) provides a detailed review of the expansion and environmental management of the airport industrial areas, but broadly, stormwater and groundwater influences from industrial activities drain towards KELSET. KELSET Pond was constructed circa 1950 and acted as a sediment trap. Migration of contaminated sediment downward from the industrial activities to the remainder of KELSET would have occurred prior to construction of the water impoundment structure; regardless, there was a partial breach in 1997 which would have likely remobilized material. Elevated concentrations of cadmium, chromium, and zinc have been recorded (as well as other contamination) in sediment samples collected from KELSET Pond and KELSET, which is consistent with the known historical industrial activities (i.e., cadmium and chromium compounds were used to electroplate aircraft parts, and zinc chromate paint was commonly used).

KELSET Pond and KELSET have been the subject of considerable investigation. Sediment remediation and habitat restoration programs were completed by PSPC and Transport Canada for KELSET (the portion within the airport property) in 2019/20 and at KELSET Pond in 2020/21, and confirmatory sampling showed that the remediation programs were successful. This current investigation provides the results from supplemental investigation and HHERA for select portions of KELSET below KELSET Pond where intrusive remediation has not been completed. The objective of the HHERA was to assess the potential human health and ecological risks associated with the residual concentrations of airport-related contaminants in KELSET. The Study Area for the HHERA included the portions of KELSET between KELSET Pond to Patricia Bay Highway, and between Lochside Drive to Bazan Bay. The portions of KELSET that flow through privately-owned land (i.e., between Patricia Bay Highway and Lochside Drive) were not part of this assessment. The overall objective of the HHERA is to assist PSPC and Transport Canada in developing an appropriate risk management strategy for KELSET within the Study Area.

¹ Golder Associates Ltd was acquired by WSP Canada Inc. (WSP) and between January 2022 and 31 December 2022, was known as Golder, a member of WSP (WSP Golder). As of 1 January 2023, Golder was fully amalgamated with WSP.

1.2 Report Organization

The main body of this document has been organized to emphasize readability for a broad audience, with technical information placed in the appendices to the extent possible. The HHERA is structured as follows:

- Section 1 provides an introduction to the HHERA along with the project context and objectives, report organization, and an overview of the regulatory and risk assessment framework used to conduct the HHERA.
- Section 2 provides relevant site information used to conduct the HHERA.
- Section 3 provides the problem formulation that describes how the available site information was used to determine which substances, receptors (human and ecological), and exposure pathways were evaluated in the HHERA. The purpose of the problem formulation is to identify contaminants of potential concern (COPCs), if any, for further quantitative analysis.
- Section 4 provides the aquatic ecological risk assessment, which summarizes how risks were evaluated for aquatic organisms (i.e., aquatic plants, invertebrates, and fish) from exposure to the COPCs identified in the problem formulation.
- Section 5 summarizes the overall results and conclusions and discusses the degree of confidence in those conclusions, as well as the implications for future risk management planning.

1.3 Regulatory Framework

Although KELSET originates at the Victoria International Airport on federal land, the Study Area evaluated in the HHERA is located entirely on provincial lands. Therefore, for the purposes of the HHERA, provincial soil, sediment, and water standards² and guidelines³ were used to evaluate the available chemistry data. For information purposes, the available chemistry data (soil, sediment, and water) were also screened against federal criteria, as described below. WSP understands that there is no intent to pursue a provincial Certificate of Compliance.

1.3.1 Provincial Criteria

Sediment data were screened against the following:

- Aquatic Life—Sediment data were screened using BC CSR Schedule 3.4 Generic Sediment Standards for Sensitive Use (BC ENV 2023a). Samples collected between KELSET Pond and Patricia Bay Highway were compared to freshwater standards (SedFS) and samples collected from locations downstream of Lochside Drive, which were collected below the high-tide line, were compared to marine and estuarine standards (SedMS).
- Human Health—Human health screening values are not available for sediment. Therefore, as per Technical Guidance 15 (BC ENV 2017), sediment data were screened against BC CSR Schedule 3.1 Part 1 Matrix

 ² Contaminated Sites Regulation (CSR; BC Reg. 375/96 [includes BC Reg 128/2022. App 2 and BC Reg 133/2022 amendments effective March 1, 2023, as amended by BC Reg 2/2023 and BC Reg 35/2023]); BC ENV (2023a and 2023b).
 ³ BC approved and working water quality guidelines (BC ENV 2023b and BC ENV 2021).

Numerical Soil Standards for intake of contaminated soil or Schedule 3.1 Part 2 Generic Numerical Soil Standards to Protect Human Health (BC ENV 2023a). Urban park land use (PL) was assumed.

Surface water and porewater data were screened against the following:

- Aquatic Life—Surface water and porewater data were screened against BC Working and Approved Water Quality Guidelines (WQGs) for long-term chronic protection of freshwater aquatic life (BC ENV 2021; BC ENV 2023c). Where WQGs for dissolved metals were unavailable, WQGs for total metals were applied.
- Human Health—Although surface water in KELSET is not used as a drinking water source, it could be incidentally ingested during recreation. Therefore, as a conservative measure, surface water data were screened against the health-based drinking water guidelines from the BC Working and Approved WQGs (BC ENV 2021; BC ENV 2023c). Drinking water guidelines based on aesthetic considerations such as colour, taste, or odour were not selected.

Soil data were screened against the following:

- Ecological Health—Soil data were screened against BC CSR Schedule 3.1 Part 1 Matrix Numerical Soil Standards for toxicity to soil invertebrates and plants or Schedule 3.1 Part 3 Generic Numerical Soil Standards to protect ecological health (BC ENV 2023a). Urban park land use (PL) was assumed. Pathway-specific soil standards protective of groundwater flow to surface water used by aquatic life were not used to screen the soil data since surface water and porewater data were available for the evaluation of this exposure pathway.
- Human Health—Soil data were screened against BC CSR Schedule 3.1 Part 1 Matrix Numerical Soil Standards for intake of contaminated soil or Schedule 3.1 Part 2 Generic Numerical Soil Standards to protect human health (BC ENV 2023a). Urban park land use (PL) was assumed. Pathway-specific soil standards protective of groundwater used for drinking water were not used since groundwater in the Study Area is not used as a source of drinking water (Section 2.1) and surface water data were available for evaluation of incidental ingestion of water in KELSET during recreational activities.
- Background—If the screening criteria was less than the local background estimate, per Protocol 4 (BC ENV 2023d), the background estimate was applied in place as the screening criteria.

1.3.2 Federal Guidelines

Sediment data were screened against the following:

Aquatic Life—Sediment data were screened using CCME Sediment Quality Guidelines for the protection of aquatic life (CCME 1999). The guidelines are divided into freshwater and marine water categories within which interim sediment quality guidelines (ISQG) and probable effect levels (PEL) are provided. Samples collected between KELSET Pond and Patricia Bay Highway were compared to freshwater guidelines and samples collected from locations downstream of Lochside Drive, which were collected below the high-tide line, were compared to marine and estuarine guidelines.

Human Health—Human health screening values are not available for sediment. Therefore, sediment data were screened against CCME Soil Quality Guidelines for the protection of human health. Residential/parkland (RL/PL) land use was assumed. Per- and polyfluoroalkyl substances (PFAS) data were screened against Health Canada (2019) Soil Screening Values (SSVs).

Surface water and porewater data were screened against the following:

- Aquatic Life—Surface water and porewater data were screened against CCME Water Quality Guidelines for the protection of freshwater aquatic life (CCME 2007).
- Human Health—Although surface water in KELSET is not used as a drinking water source, it could be incidentally ingested during recreation. Therefore, as a conservative measure, surface water data were screened against the health-based Health Canada Guidelines for Canadian Drinking Water Quality (Health Canada 2022). Drinking water guidelines based on aesthetic considerations such as colour, taste, or odour were not selected.

Soil data were screened against the following:

- Ecological Health—Soil data were screened against CCME Soil Quality Guidelines for the protection of environmental health (CCME 1999). Residential/parkland land use (RL/PL) was assumed. Pathway-specific soil guidelines protective of groundwater flow to surface water used by aquatic life were not used to screen the soil data since surface water and porewater data were available for the evaluation of this exposure pathway.
- Human Health—Soil data were screened against CCME Soil Quality Guidelines for the protection of human health (CCME 1999). Residential/parkland land use (RL/PL) was assumed. Pathway-specific soil guidelines protective of groundwater used for drinking water were not used since groundwater in the Study Area is not used as a source of drinking water (Section 2.1) and surface water data were available for evaluation of incidental ingestion of water in KELSET during recreational activities.

1.3.3 Risk Assessment Guidance and Framework

WSP considered both provincial and federal guidance in the preparation of the HHERA:

- BC Ministry of Environment and Climate Change Strategy (BC ENV 2021e) Protocol 1 for Contaminated Sites: Detailed Risk Assessment.
- Health Canada. 2021. Federal Contaminated Sites Risk Assessment in Canada, Part I Guidance on Human Health Preliminary Quantitative Risk Assessment, Version 3.0. March 2021.
- CCME. 2020. Ecological Risk Assessment Guidance Document. Canadian Council of Ministers of the Environment, 2020.

These guidance manuals may have minor differences in how policy decisions are applied to the technical process of the risk assessment, but both federal and provincial guidance share the same process:

- Problem formulation. The problem formulation consolidates the available site information in order to identify the contaminants of potential concern, the relevant human and ecological receptors, and the exposure pathways that connect contaminants and receptors. The problem formulation provides a structured approach for which contaminant-pathway-receptor combinations need to move forward for quantitative analysis in the exposure and effects assessment. A contaminant would not carry forward for risk analysis if it was present at concentrations less than standards or if there was no operable pathway for that contaminant to reach the relevant receptors.
- Exposure and effects assessment. For those combinations of contaminants and pathways that carry forward from the problem formulation, the exposure assessment involves estimating the exposure dose while the effects (toxicity) assessment involves comparing the results of the exposure assessment to "safe" concentrations specified by regulatory guidance or informed by the available and appropriate scientific literature.
- Risk characterization. The information from the exposure and effects assessments is combined in the risk characterization to produce numerical estimates of human and ecological risks. These numerical estimates include hazard quotients, or incremental lifetime cancer risks for human exposure to carcinogenic contaminants, which are then compared to acceptable risk limits specified in regulatory guidance. The ecological risk assessment can integrate those numerical estimates with other lines of evidence such as biological surveys, bioaccumulation models, or toxicity testing to arrive at an overall conclusion based on the totality of the data. Regardless of the risk characterization method, the uncertainty in the conclusion is described to assist risk managers reach an informed decision about next steps.

2.0 SITE INFORMATION

The following sections provide a summary of relevant information regarding the general site setting, land use, and ecological resources in KELSET, relevant information regarding the background creek (TENTEN) used in the HHERA, and a summary of previous investigations to highlight topics that were relevant in the design and execution of the HHERA. WSP acknowledges that KELSET is within the areas of interest of the Tsartlip, Tseycum, Tsawout, Pauquachin, and Malahat First Nations, and the Te'Mexw Treaty Association (Millennia Research Limited 2021).

2.1 Site Context

KELSET is a freshwater creek that originates at the Victoria International Airport and terminates in Bazan Bay (Figure 1). From the airport, KELSET flows east through a culvert at Canora Road and into KELSET Pond. From KELSET Pond, the water flows through two municipal parks (Reay Creek Park and Peter Grant Park) toward a culvert under Patricia Bay Highway. From Patricia Bay Highway, KELSET flows though privately-owned land and terminates in Bazan Bay. The total length is approximately one kilometre from KELSET Pond to Bazan Bay. There are no other surface water bodies within 500 m of the Study Area, and groundwater is not currently used as a source of drinking water. There are no drinking water wells within 500 m of KELSET (Government of British Columbia 2022).

Land Use and Ecological Setting

The current (and expected future) land use is urban park (e.g., the creek cuts through a ravine with walking trails that are used by park users and dog walkers). There is signage posted along KELSET and at KELSET Pond that warns park users from contacting the sediment because of elevated metal concentrations.

KELSET provides important ecological habitat. KELSET is located in the Coastal Douglas Fir biogeoclimatic zone, moist maritime subzone (CDFmm), which is characterized by mild winters with lots of precipitation and a relatively dry summer season (BC Ministry of Forests 1999). The park land adjacent to KELSET is relatively flat and consists of dense shrubs and mature trees with grassy banks in portions of the creek. Camosun College (2018) reported riparian flora and fauna observations along KELSET downstream of the dam to Bazan Bay and identified occurrences of provincially red- and blue-listed plant species combinations (additional information with respect to species at risk provided in Section 3.3.1). The following flora and fauna were identified by Camosun College (2018):

- 14 distinct tree species, 29 shrub species, 58 non-woody species, and 26 non-vascular plant species; the majority of which were native to KELSET.
- 46 bird species, including Mallard Duck [Anus platyrhynchos], Great Blue Heron [Ardea Herodias], and American Robin [Turdus migratorius]).
- Six mammal species, including American Mink [Neovison vison], Deer Mouse [Peromyscus maniculatus], Northern Racoon [Procyon lotor], Eastern Cottontail [Sylvilagus floridanu], North American River Otter [Lontra canadensis].

Other Stressors

KELSET is subject to multiple stressors (i.e., factors that affect natural stream processes) that are consistent with urbanized creeks. Camosun College (2018) identified 26 non-native plant species and 12 invasive species (e.g., Himalayan blackberry [*Rubus armeniacus*] and English ivy [*Hedera helix*]). The presence of the water impoundment structure that forms KELSET Pond will have altered the normal sediment transport patterns within the creek, which is further altered by stormwater inputs. These stormwater inputs have resulted in seven individual documented fish kills since 1982 (Macdonald and Bruce 2015, SLR 2018a). Some of these incidents are attributed to industrial activities on airport property, but there have also been releases from other sources (e.g., a suspected discharge of bleach to stormwater in July 2021).

TENTEN (located northwest of KELSET on airport lands; see Figure 1), was identified as a representative urbanized background creek for comparison. TENTEN has also been subject to multiple remediation projects including construction of a wetland complex to provide treatment for nutrient-laden water from nearby farming operations, enhancement of existing facilities, and creation of a diversion channel to direct pond overflow into a retention area to reduce sediment from entering TENTEN (Victoria International Airport 2018). The objective of the background creek is not to compare KELSET to a pristine environment—it is to provide context to differentiate potential effects from the key metal contaminants of concern related to the industrial activities from potential effects from habitat alteration and urbanization.

2.2 Summary of Previous Investigations

Environmental investigations have been occurring at KELSET since the 1980s (MB Laboratories 2005). Summaries of the historical reports prior to 2017 are provided in the Phase I ESA conducted by SLR (2018a). Table 1 provides a brief summary of those historical investigations over the last 5 years. WSP has relied on the chemistry data from these reports, which has been integrated into the current HHERA where applicable.

Reference	Key Findings			
Upstream KELSET and K	ELSET Pond			
SLR 2018a – Phase I ESA Reay Creek	Phase I ESA of KELSET and KELSET Pond identified areas of potential environmental concern (APECs) and confirmed three of those APECs (Upper KELSET and Side Channel; Mid KELSET; KELSET Pond) as areas of environmental concern (AECs) based on the presence of metals related to historic and current airport activities.			
	 Hydrocarbons, PAHs, VOCs, metals, glycols, and PFAS were identified as PCOCs in soil, groundwater, sediment, surface water, and/or vapour in the identified APECs. 			
SLR 2019a – Phase II ESA Reay Creek	Phase II ESA included the advancement of 12 boreholes (8 of which were completed as monitoring wells) and the collection of soil, groundwater, sediment, and surface water samples from the AECs and APECs.			
	The three AECs from the Phase I ESA were retained and two other APECs were confirmed as AECs. Metals, hydrocarbons, and PAHs were identified as COCs in sediment, surface water, soil and/or groundwater. Soil vapour was eliminated as a media of concern.			
	 Work was conducted in conjunction with sediment remediation as well as construction of a stormwater retention pond by the Victoria Airport Authority in the vicinity of AEC 2 (upper mid KELSET). 			

Table 1: Summary of Previous Investigations at KELSET

Reference	Key Findings			
SLR 2019b – Reay Creek Remediation Project: Supplemental Sediment Sampling and Probing on Airport Lands	 Supplemental sediment sampling of KELSET on airport lands to advance the remedial strategy. Metal contamination (cadmium, chromium, copper, lead, and zinc) greater than applicable sediment standards was identified. PAH exceedances greater than applicable standards were identified in a small area of sediment but SLR concluded the exceedances were the result of a recent release rather than historical airport activities. 			
SLR 2020 – Confirmation of Remediation KELSET (Reay) Creek (Victoria International Airport)	Remediation of contaminated sediment from upstream reaches of KELSET on airport lands resulted in removal of approximately 187 m ³ of contaminated sediment followed by backfilling and site restoration. Confirmatory samples were less than applicable standards for metals, PAHs, hydrocarbons, and VOCs.			
SLR 2021a – Confirmation of Remediation KELSET (Reay Creek) Pond	 Remediation of contaminated sediment from KELSET Pond resulted in removal of approximately 5,100 m³ of metal and PAH-contaminated material followed by backfilling and site restoration. With the exception of marginal cadmium exceedances (i.e., less than 2x) in three samples collected along the pond boundary (adjacent to 9461 Braun Crescent), confirmatory samples were less than applicable standards for metals, PAHs, hydrocarbons, VOCs, and PCBs. 			
SLR 2021b – Characterization of Soil and Sediment from KELSET (Reay) Creek Pond Bank Adjacent to 9461 Braun Crescent	Targeted investigation to delineate residual contamination adjacent to 9461 Braun Crescent. Samples from four of eight test pits had concentrations of arsenic, cadmium, and/or zinc greater than applicable standards. SLR concluded the potential source of this contamination was sediment from KELSET Pond, fill material encountered within the pond bank, or a combination of both.			
KELSET (Downstream of	KELSET Pond; Study Area for the HHERA)			
SLR 2018b – Reay Creek Downstream Sediment and Surface Water	SLR conducted sediment and surface water sampling within the lower reaches of KELSET and collected a total of 23 sediment samples and six surface water samples from 17 locations downstream of KELSET Pond and Patricia Bay Highway.			
Assessment	Sediment samples were analyzed for a broad list of potential COC including metals, PAHs, hydrocarbons, PFAS, pesticides, and PCBs. Water samples were analyzed for total metals, PAHs, and hydrocarbons.			
	Concentrations of cadmium, chromium, lead, and zinc exceeded applicable standards in multiple samples. One sample exceeded the applicable standard for DDT.			
	There were no exceedances in surface water, and hydrocarbon concentrations in water were below laboratory detection limits.			
Thurber 2019 – Reay Creek Environmental Testing and Analytical Results	Thurber collected soils from shallow test pits excavated on the creek banks downstream of KELSET dam to determine if contaminated sediments had impacted the creek side areas downstream of the dam. Cadmium and zinc were identified at concentrations exceeding applicable soil standards.			
Golder 2021a – Data Review and Gap Analysis Report	 Golder rescreened the sediment chemistry results to current numerical standards (i.e., BC CSR Stage 13 amendments made on February 1, 2021) and found no change in the conclusions reached by SLR (2018b). 			
Golder 2021b – Supplemental Sediment Sampling Report	Golder conducted supplemental sediment sampling from 24 locations and analyzed samples for metals, PAHs, and/or DDT. There were no exceedances noted in samples taken from the intertidal or marine environments below Lochside Drive. There were no exceedances of PAHs or DDT freshwater sediment standards in samples collected between KELSET Pond and the Patricia Bay Highway, but there were exceedances for arsenic, cadmium, chromium, and zinc.			

AEC = area of environmental concern; APEC = area of potential environmental concern; BC CSR = British Columbia Contaminated Sites Regulation; COC = contaminant of concern; DDT = dichlorodiphenyltrichloroethane; ESA = environmental site assessment; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyl; PFAS = Per- and Polyfluoroalkyl Substances; VOC = volatile organic compound.

Based on the results of the supplemental sediment sampling conducted in June 2021 (Golder 2021b; summarized in Table 1), WSP conducted an additional supplemental sampling program in October and November 2021. A detailed report describing the sample collection methods, analytical approaches, and quality assurance/quality control measures, as well as the laboratory certificates of analysis, is provided in Appendix A.

3.0 PROBLEM FORMULATION

The purpose of the problem formulation is to develop a focused understanding of what human and ecological receptors are likely to be present at KELSET, to determine which substances constitute COPCs at KELSET, and to describe how the COPCs migrate from the source(s) and ultimately reach, and are taken up by, receptors at KELSET. The results of the problem formulation are summarized in conceptual exposure models for both human and ecological health.

3.1 Focus on Metals

WSP has included relevant post-remedial soil, sediment, and surface water chemistry data in this HHERA, including data reported by SLR (2018b) and Thurber (2019). These reports include information about a wide range of potential contaminants (e.g., PAHs, PCBs, pesticides, PFAS, BTEX). This data was compiled and screened against applicable pathway-specific criteria as shown in Tables B-1 through B-5 in Appendix B and described in Section 1.3.

WSP screened the available data and concluded that metals were the primary contaminants of interest that warranted discussion in the following sections of this problem formulation. The following parameters were considered, but not retained in the problem formulation:

- PAHs were commonly analyzed in sediment by SLR (2018b) and there have been no sediment samples with PAH concentrations that exceeded provincial numerical standards. However, there were exceedances of the CCME ISQGs (but not the PELs). ISQGs are consistent with a threshold effect level and represent a level below which adverse effects are expected to rarely occur. Concentrations between the ISQG and the PEL are considered representative of a potential for occasional adverse effects; however, the PELs provide a recommended assessment tool for the identification of sediments with a greater likelihood of being associated with adverse effects (CCME 1999) and were used to identify parameters that were carried forward in the problem formulation.
- PCBs and PFAS had a more limited sampling program but concentrations were typically less than analytical detection limits and were consistently less than standards and guidelines, with the exception of one total PCB exceedance greater than the CCME ISQG (but less than the PEL and applicable BC CSR standards).
- SLR (2018b) measured exceedances of total dichlorodiphenyldichloroethane (DDD) and the sum of total dichlorodiphenyltrichloroethane (DDT) + total dichlorodiphenyldichloroethylene (DDE) + total DDD in two sediment samples collected immediately west of Patricia Bay Highway, but confirmatory and step-out sampling conducted by Golder (2021b) found no evidence of pesticides (i.e., concentrations were less than analytical detection limits), and the original sampling from SLR (2018b) found no evidence of other pesticides in sediment.

As a result, WSP has focused the remainder of the discussion about identification of COPCs on metals. Metals are the primary contaminant of concern associated with the industrial activities on the airport property, and the remediation programs for the upper reaches of KELSET and KELSET Pond were focused on removing cadmium and chromium.

3.2 Human Health Problem Formulation

3.2.1 Identification of Potential Human Receptors

KELSET is a freshwater creek in a forested ravine that runs through two municipal parks bordered predominantly by private residential housing within the Town of Sidney, before running through privately-owned lands and terminating at Bazan Bay within the District of North Saanich. The ravine is approximately 30 to 100 m wide, with a public walking trail adjacent to KELSET where the creek runs though the parks. Based on current and anticipated future land use, the primary human receptor involves recreational use. People can access KELSET and its riparian areas throughout the municipal park area on a year-round basis. These people can be of any age and could include members of local First Nations. The assumed frequency for a recreational user is also likely to be protective of how owners of residential lots below Patricia Bay Highway might use their land for recreational purposes, but we note that those areas are outside the scope of this risk assessment, and we have not included a residential land use scenario. The recreational user is also expected to be protective of park workers who would work in the municipal park areas to remove litter, but a construction worker scenario was not evaluated because any work at KELSET would be expected to be of limited duration (i.e., less than 90 days). These short-term exposures are regulated by WorkSafeBC and are not included in a contaminated sites risk assessment unless the exposure is expected to be longer than 90 days (BC ENV 2021e).

3.2.2 Identification of Potential Exposure Pathways

Exposure pathways for human receptors are routes by which receptors could potentially be exposed to COPCs in environmental media. The area around KELSET consists of a creek and surrounding riparian environment and is anticipated to remain as such in the future. Current and future human receptors include recreational users who may access KELSET year-round. As a result, the following exposure pathways were evaluated in the human health risk assessment (HHRA):

- Direct contact (incidental ingestion, dermal contact, and inhalation of dry particulate) with soil along the banks of KELSET.
- Direct contact (incidental ingestion, dermal contact, and inhalation of dry particulate) with sediment in KELSET.
- Direct contact/incidental ingestion of surface water in KELSET.

Note that a recreational scenario does not include organized foraging of berries, fish, or other foodstuffs for casual, subsistence, or cultural uses. Harvesting activities are not generally permissible in municipal parks. WSP recognizes that this decision in the risk assessment may need to be revisited as the custodial agency continues with engagement and consultation efforts.

The land use scenario also assumes that groundwater or surface water in KELSET is not used as a source of potable water. Inhalation pathways (vapour generated from sediment, soil or groundwater) were not evaluated because metals are not volatile contaminants.

3.2.3 Identification of Contaminants of Potential Concern

The initial list of COPCs is based on a comparison of the maximum concentrations to the lowest applicable standard or guideline value for human health.

Initial Screening

As described in Section 1.3, provincial standards for the intake of contaminated soil and pathway-specific CCME human health guidelines for soil ingestion or direct contact were used to screen the soil and sediment data, and drinking water quality guidelines were used to screen the available surface water data for the evaluation of risks to human health from the recreational pathway (e.g., incidental consumption during play). Screening results for the individual samples are provided in Appendix B (shown in Table B-1a for freshwater sediment, Table B-1b for estuarine/marine sediment, Table B-2 for surface water, and Table 5 for soil). The screening of the maximum observed concentrations for the initial list of contaminants of potential concern (i.e., those metal parameters that exceed human health or ecological screening criteria in sediment) to the applicable human health criteria is summarized in Table 2 for sediment and soil and in Table 3 for surface water.

Parameter	Maximum Sediment Concentration	Maximum Soil Concentration	BC CSR Soil Standard ^a	CCME Soil Guideline ^b	Retained as a COPC?
Arsenic	22.4	8	40	31°	No
Cadmium	35	14.8	40	14	No – See text
Chromium	154	100	250	220	No
Iron	45,900	38,500	35,000	NG	No – see text
Lead	60.2	84.8	120	140	No
Zinc	502	464	25,000	10,000	No

Table 2: Screening Results for the Metals of Concern in Sediment and Soil for Human Health

Notes:

All units in milligrams per kilogram (mg/kg).

BC CSR = British Columbia Contaminated Sites Regulation; CCME = Canadian Council of Ministers of the Environment; COPC = contaminant of potential concern.

a. BC CSR Schedule 3.1 Part 1 Numerical Soil Standards for intake of contaminated soil or Part 2 Generic Numerical Soil Standards to protect human health (urban park; PL).

b. CCME Soil Quality Guidelines for the protection of human health; soil ingestion or direct contact pathways (residential/parkland land use).

c. Environment Canada (1999) supporting documentation for the arsenic soil guideline based on a 10⁻⁵ cancer risk.

Bold = exceeds screening criteria

Parameter	Maximum Surface Water Concentration	BC WQG for Drinking Water ^a	C WQG for hking Water ^a Health Canada Drinking Water Guideline ^c	
Arsenic	0.53	10	10	No
Cadmium	0.084	5	7	No
Chromium	0.7	50	50	No
Iron	484	6,500 ^b	Not applicable ^d	No
Lead	0.42	5	5	No
Zinc	17.6	3,000	Not available	No

Table 3: Screening Results for the Total Metals of Concern in Surface Water for Human Health

Notes:

All units in micrograms per litre (µg/L).

BC CSR = British Columbia Contaminated Sites Regulation; COPC = contaminant of potential concern; WGQ = water quality guideline.

a. BC Approved Water Quality Guidelines for protection of drinking water.

b. BC CSR Schedule 3.2 Generic Numerical Water Standards for protection of drinking water; applied in lieu of an available WQG drinking water standard.

c. Health Canada Guidelines for Canadian Drinking Water Quality.

d. The available Health Canada guideline is based on an aesthetic objective, which is not considered applicable (see Section 1.3).

Further Consideration of Cadmium

Although the maximum concentrations of cadmium in sediment and soil exceeded the applicable CCME soil ingestion guideline, cadmium was not carried forward as a COPC for the following reasons:

- The screening was based on maximum concentrations, which is highly conservative since the actual direct contact exposure with respect to a contaminant is not based on the maximum concentration. Consistent with Health Canada and provincial risk assessment guidance, the 95% upper confidence limit of the mean (95% UCLM) is considered a more realistic worst-case exposure concentration. As a result, the 95% UCLMs for cadmium in sediment and soil were calculated using ProUCL 5.1 (US EPA 2016) and the statistical outputs are provided in Appendix D. The 95% UCLMs were 7.9 mg/kg and 5.8 mg/kg for sediment and soil, respectively, which are lower than the CCME soil ingestion guideline of 14 mg/kg.
- KELSET is considered a provincial site and federal criteria were only considered for information purposes.
 There were no BC CSR exceedances of cadmium in sediment or soil for the protection of human health.

Further Consideration of Iron

Although the maximum concentrations of iron in sediment and soil exceeded the applicable BC CSR human health screening value, iron was not carried forward as a COPC for the following reasons:

As described above, the screening was based on maximum concentrations, which is highly conservative since the actual direct contact exposure with respect to a contaminant is not based on the maximum concentration. As a result, the 95% UCLMs for iron in sediment and soil were calculated using ProUCL 5.1 (US EPA 2016) and the statistical outputs are provided in Appendix D. The 95% UCLMs were 28,078 mg/kg and 28,823 mg/kg for sediment and soil, respectively, which are lower than the BC CSR intake of contaminated soil standard of 35,000 mg/kg.

 WSP notes that exceedances of the iron standard were also found in sediment in the background creek (TENTEN), and there is a regional background value of 70,000 mg/kg in soil (Region 1, Vancouver Island; BC ENV 2023d). As a result, WSP concludes that the iron concentrations in sediment and soil at KELSET are consistent with natural background concentrations.

3.2.4 Human Health Conceptual Exposure Model

A conceptual exposure model showing a diagrammatic representation of the relationships between the receptors, COPCs, and exposure pathways is provided in Figure 1 (in-text). The conceptual exposure model describes how a stressor might affect human health and provides a graphical representation of exposure pathways. The stressors considered in this assessment are the toxicological effects of COPCs on human receptors.

Figure 1: Human Health Conceptual Exposure Model

3.3 Ecological Problem Formulation

3.3.1 Identification of Potential Ecological Receptors

As noted in Section 3.2.1, KELSET is a freshwater creek located in a forested ravine that runs through two municipal parks before running through privately-owned lands and terminating at Bazan Bay. The following ecological receptor groups were evaluated in the ecological risk assessment (ERA) based on the information about the ecological setting summarized in Section 2.1:

- Terrestrial plants and soil invertebrates
- Wildlife (including terrestrial and semi-aquatic birds and mammals)
- Aquatic life receptors (including aquatic plants, pelagic and benthic invertebrates, and fish)

Consideration of Listed Species

As described in Section 2.1 (Ecological Setting), Camosun College (2018) identified a number of designated, sensitive, plant communities in the Study Area, including provincially red- and blue-listed plant species combinations⁴. As a result, WSP conducted a search of the BC Conservation Data Centre (BC CDC 2022a) database and iMap (BC CDC 2022b) to identify provincially- and federally-listed species that could occur at KELSET (results provided in Appendix C).

The BC CDC search returned a total of 234 records, which was queried by a "user defined polygon" with an approximate 500 m buffer around KELSET. To narrow the search results, iMap was queried, which identified one provincially blue-listed ecological community occurring within the vicinity of KELSET (i.e., black cottonwood – red alder/salmonberry).

3.3.2 Identification of Potential Exposure Pathways

Exposure pathways for ecological receptors are routes by which receptors could potentially be exposed to COPCs in environmental media. Potential ecological receptors include soil invertebrates, terrestrial plants, terrestrial and semi-aquatic wildlife, and aquatic life receptors. As a result, the following exposure pathways were evaluated in the ERA:

- Direct contact with and uptake of contaminants in soil by terrestrial plants and soil invertebrates.
- Direct contact with and uptake of contaminants in sediment, porewater, and surface water by aquatic life receptors.
- Ingestion of dietary items by terrestrial and semi-aquatic wildlife.

⁴ Based on conservation status rank, species in BC are assigned to a list that sets out the status and conservation priorities. A red-listed species is defined as any species or ecosystem that is at risk of being lost (extirpated, endangered, or threatened); a blue-listed species is defined as any species or ecosystem that is of special concern.

Note there are no BC CSR soil, sediment, or surface water standards for the protection of wildlife receptors, which means that chemistry data cannot be readily screened for the wildlife exposure pathways. Instead, a check on the potential for bioaccumulation was completed in Section 3.3.3.

3.3.3 Identification of Contaminants of Potential Concern

Applicable criteria were used to screen the data using a tiered approach:

- Primary Screening: Maximum concentrations were compared to the applicable screening values as described in Section 1.3. If the maximum concentration was below the applicable screening value, the parameter was not evaluated further. If the maximum concentration was above the screening value, the parameter was carried forward for secondary screening.
- Secondary Screening for Aquatic Life and Terrestrial Plants and Soil Invertebrates: The 90th percentile concentrations were compared to the same screening values used in the primary screening as described above. The 90th percentile is intended to confirm that at least 90% of the samples are lower than the screening value, which is generally appropriate to protect non-mobile receptors at a population or community level. A parameter was retained as a COPC in the ERA if the 90th percentile concentration exceeded the selected screening value.
- Check on Bioaccumulation in Wildlife: The 95% UCLM soil and sediment concentrations were compared to agricultural soil standards/guidelines intended to protect livestock for risks associated with ingestion of soil and crop fodder. This screening tool was used in the absence of wildlife-specific soil screening values. A parameter was retained as a COPC in the ERA if the 95% UCLM concentration exceeded the selected screening value.

Primary Screening

The screening results for the individual samples are provided in Appendix B (shown in Table B-1a for freshwater sediment, Table B-1b for estuarine/marine sediment, Table B-2 for surface water, and Table 5 for soil). Based on the results, Table 4 summarizes the parameters that were retained for secondary screening in sediment, surface water, and porewater for the protection of aquatic life, and Table 5 summarizes the parameters that were retained for secondary screening in soil for the protection of terrestrial plants and soil invertebrates.

As described previously, CCME ISQGs are consistent with a threshold effect level and represent a level below which adverse effects are expected to rarely occur. Concentrations between the ISQG and the PEL are considered representative of a potential for occasional adverse effects; however, the PELs provide a recommended assessment tool for the identification of sediments with a greater likelihood of being associated with adverse effects (CCME 1999). Therefore, for sediment screening against federal guideline, PELs were applied to identify parameters carried forward for secondary screening.

Parameter	Maximum Concentration	Provincial Freshwater Aquatic Life Screening Value	Federal Freshwater Aquatic Life Screening Value			
Sediment						
Arsenic	22.4	11 ^a	17 ^d			
Cadmium	35	2.2 ^a	3.5 ^d			
Chromium	154	56 ª	90 ^d			
Lead	60.2	57 ^a	91.3 ^d			
Zinc	502	200ª	315 ^d			
Surface Water						
Copper, dissolved	3.7	0.6 – 1.8 ^b	2.0 – 2.55 °			
Zinc, total	17.6 °	33 – 69 ^b	17 – 68 ^e			
Porewater						
Aluminium, dissolved	169	100 ^b	100 ^e			
Beryllium, dissolved	<1.5	0.13 ^b	NG			
Cadmium, dissolved	<1.6	0.11 – 0.24 ^b	0.11 – 0.18 ^e			
Chromium, dissolved	<13	8.9 ^b	8.9 ^e			
Chromium, hexavalent, dissolved	<440	1 ^b	1 ^e			
Cobalt, dissolved	20.8	4 ^b	NG			
Copper, dissolved	4.1	1.4 – 2.8 ^b	2.0 – 2.8 ^e			
Manganese, dissolved	31,774	882 – 1,130 ^b	350 – 470 ^e			
Silver, dissolved	<0.62	0.05 – 1.5 ^b	0.25 °			
Zinc, dissolved	13	7.5 – 30 ^b	8.9 – 31 ^e			

Table 4: Parameters Retained for Secondary Screening for Aquatic Life

Notes:

All sediment units in milligrams per kilogram (mg/kg) and water units in micrograms per litre (µg/L).

a. BC CSR Schedule 3.4 Generic Numerical Sediment Standards; freshwater sediment standards for sensitive use.

b. BC Approved and Working Water Quality Guidelines for long-term chronic protection of freshwater aquatic life; hardness, pH, and/or dissolved organic carbon-dependent.

c. Although the maximum total zinc concentration in surface water was 17.6 µg/L, only the concentration of 11 µg/L at SW21-07 exceeded the applicable hardness-dependant guideline.

d. CCME Sediment Quality Guidelines for the protection of aquatic life; probable effects level (PEL).

e. CCME freshwater aquatic life guidelines for long-term chronic protection of freshwater aquatic life; hardness, pH, and/or dissolved organic carbon-dependent.

Parameter	Maximum Concentration	BC CSR Soil Direct Contact Standard ^a	CCME Soil Direct Contact Guideline ^b	
Soil				
Cadmium	14.8	30	10	
Chromium	100	200	65 °	
Zinc	464	450	250	

Table 5: Parameters Retained for Secondary Screening for Terrestrial Plants and Soil Invertebrates

Notes:

All units in milligrams per kilogram (mg/kg)

BC CSR = British Columbia Contaminated Sites Regulation; CCME = Canadian Council of Ministers of the Environment

a. BC CSR Schedule 3.1 Part 1 Numerical Soil Standards for toxicity to soil invertebrates and plants or Part 2 Generic Numerical Soil Standards to protect ecological health (urban park; PL).

b. CCME Soil Quality Guidelines for the protection of environmental health; soil contact pathway (residential/parkland land use).

c. BC ENV (2023d). Protocol 4 for Contaminated Sites - Establishing Local Background Concentrations in Soil; Region 1, Vancouver Island.

Secondary Screening

The 90th percentile and 95% UCLM concentrations are more realistic measures of the exposure that receptors may experience at KELSET. Summary statistics are provided in Appendix D, along with the output from ProUCL 5.1. The results of the secondary screening for aquatic life and terrestrial plants and soil invertebrates are presented in Table 6 and Table 7, respectively. Secondary screening could not be conducted for the surface or porewater data due to insufficient sample size (i.e., n<10).

Table 6: Secondary Screening of Sediment for Aquatic Life Receptors

Parameter	Maximum Concentration	90 th Percentile Concentration	BC CSR Sediment Standard for Freshwater Aquatic Life ^a	CCME Sediment Guideline for Freshwater Aquatic Life ^b	Retained as a COPC?
Arsenic	22.4	7.4	11	17	No
Cadmium	35	14	2.2	3.5	Yes
Chromium	154	86	56	90	Yes
Lead	60.2	43	57	91.3	No
Zinc	502	356	200	315	Yes

Notes:

All units in milligrams per kilogram (mg/kg).

BC CSR = British Columbia Contaminated Sites Regulation; CCME = Canadian Council of Ministers of the Environment; COPC = contaminant of potential concern

a. BC CSR Schedule 3.4 Generic Numerical Sediment Standards; freshwater sediment standards for sensitive use.

b. CCME Sediment Quality Guidelines for the protection of aquatic life; probable effects level (PEL).

Bold / Shaded = 90th percentile concentration exceeds screening criteria and the parameter is carried forward as a COPC in the ERA.

Parameter	Maximum Concentration	90 th Percentile Concentration	BC CSR Soil Direct Contact Standard ^a	CCME Soil Direct Contact Guideline ^b	Retained as a COPC?
Cadmium	14.8	10	30	10	No
Chromium	100	80	200	65 °	No ^d
Zinc	464	242	450	250	No

Table 7: Secondary Screening of Soil for Terrestrial Plants and Soil Invertebrates

Notes:

All units in milligrams per kilogram (mg/kg).

BC CSR = British Columbia Contaminated Sites Regulation; CCME = Canadian Council of Ministers of the Environment; COPC = contaminant of potential concern

a. BC CSR Schedule 3.1 Part 1 Numerical Soil Standards for toxicity to soil invertebrates and plants or Part 2 Generic Numerical Soil Standards to protect ecological health (urban park; PL).

b. CCME Soil Quality Guidelines for the protection of environmental health; soil contact pathway (residential/parkland land use).

c. BC ENV (2023d). Protocol 4 for Contaminated Sites - Establishing Local Background Concentrations in Soil; Region 1, Vancouver Island.

d. Not carried forward as a COPC since the 90th percentile concentration does not exceed the applicable provincial standard. Federal guidelines provided for information purposes only.

Bold = 90th percentile concentration exceeds screening criteria.

Check on Bioaccumulation for Wildlife

Several metals of concern had a 95% UCLM concentration in sediment or soil that exceeded the regional soil background concentrations from Protocol 4 (arsenic, cadmium, and zinc; statistics provided in Appendix D). These regional background values represent a value that would be highly unlikely to present unacceptable risks to populations of wildlife given that they would be exposed to that threshold on a continued basis even in the absence of point-source industrial uses. The 95% UCLM concentrations, regional estimates for background, and soil and food/fodder ingestion criteria are presented in Table 8, which shows that the 95% UCLM concentrations of arsenic and zinc are not substantially different from the regional background concentrations. There is uncertainty with respect to cadmium given that both the sediment and soil 95% UCLMs exceed that regional background value; however, the concentrations are still lower than the provincial soil criteria to protect cattle and livestock from full-time grazing where they are ingesting plants and incidental amounts of soil.

Parameter	Maximum Concentration	95% UCLM Concentration	Regional Soil Background ^a	BC CSR Soil and Fodder Ingestion Standard ^b	CCME Soil and Food Ingestion Guideline ^c	Retained as a COPC?	
Soil							
Arsenic	8	4.9	4	25	380	No	
Cadmium	14.8	5.8	0.95	10	3.8	No ^d	
Zinc	464	193	150	200	960	No	
Sediment							
Arsenic	22.4	6.3	Not applicable	25	380	No	
Cadmium	35	8.0	Not applicable	10	3.8	No ^d	
Zinc	502	225	Not applicable	200	960	No ^e	

Table 8: Secondary Screening of Soil and Sediment for Terrestrial and Semi-Aquatic Wildlife

Notes on the following page

Notes:

All units in milligrams per kilogram (mg/kg).

BC CSR = British Columbia Contaminated Sites Regulation; CCME = Canadian Council of Ministers of the Environment; COPC = contaminant of potential concern; UCLM = upper confidence limit of the mean.

- a. BC ENV (2023d). Protocol 4 for Contaminated Sites Establishing Local Background Concentrations in Soil; Region 1, Vancouver Island.
- b. BC CSR Schedule 3.1 Part 1 Numerical Soil Standards for livestock ingesting soil and fodder (agricultural land use; AL).
- c. CCME Soil Quality Guidelines for the protection of environmental health; soil and food ingestion pathway (agricultural land use).
- d. Not carried forward as a COPC since the 90th percentile concentration does not exceed the applicable provincial standard. Federal guidelines provided for information purposes only.

e. Not carried forward as a COPC since the 90th percentile concentration only marginally exceeds the applicable provincial standard. **Bold** = 95th UCLM concentration exceeds screening criteria.

Conclusions

The final summary of COPCs for the ERA is provided in Table 9. This includes all the COPCs identified in Tables 6 through 8, as well as the surface water and porewater parameters from Table 4, which were also carried forward because there was not a large enough sample size to calculate summary statistics for secondary screening.

A final check was applied to aluminum, beryllium, cobalt, manganese, and silver. These parameters were identified in the primary screening of the available porewater chemistry using the conservative assumption that porewater should be screened against surface water guidelines for the protection of aquatic life. However, these parameters did not exceed ambient water quality guidelines in the available surface water data, and concentrations in sediment were both unremarkable and did not show any visual evidence of correlations with cadmium concentrations. Aluminum, cobalt, and manganese are typically elevated in soil in the region (BC ENV 2023d) and none of these parameters are considered related to historical airport activities. As a result, WSP concluded that aluminum, beryllium, cobalt, manganese, and silver should not be retained as COPCs for the ERA and did not include them in Table 9.

Parameter	Sediment	Porewater	Surface Water	Soil
Cadmium	Yes	Yes	No	No
Chromium	Yes	Yes	No	No
Copper	No	Yes	Yes	No
Zinc	Yes	Yes	Yes	No

Table 9: Summary of Ecological COPCs

3.3.4 Ecological Conceptual Exposure Model

A conceptual exposure model showing a diagrammatic representation of the relationships between the receptors, COPCs, and exposure pathways is provided in Figure 2 (in-text). The conceptual exposure model describes how a stressor might affect ecological health and provides a graphical representation of exposure pathways. The stressors considered in this assessment are the toxicological effects of COPCs on ecological receptors.

Figure 2: Ecological Conceptual Exposure Model

3.4 **Problem Formulation Conclusions**

WSP concludes:

- For human health, there were no COPCs identified in sediment, surface water, or soil based on the assumed recreational use scenario, and therefore, risks for that scenario are acceptable. A detailed quantitative risk assessment for human health does not appear to be warranted.
- For ecological health, there were several COPCs identified for sediment (cadmium, chromium, and zinc) and water (cadmium, chromium, copper, and zinc), and these were retained for quantitative analysis in the aquatic ecological risk assessment (Section 4.0).

4.0 AQUATIC ECOLOGICAL RISK ASSESSMENT

This section provides an overview of the aquatic ecological risk assessment (Aquatic ERA). This overview section is intended to provide sufficient information to demonstrate that the approaches used in the Aquatic ERA are technically defensible and consistent with regulatory guidance and common practice, but otherwise acts as a plain-language summary to assist in risk communication and risk management planning.

4.1 **Problem Formulation Overview**

The ecological problem formulation (Section 3.3) identified four metals for quantitative risk analysis based on the screening of sediment, porewater, and surface water chemistry data. These three media are connected in terms of the potential hazards to aquatic organisms that use KELSET and are connected to the source and transport pathways in the conceptual exposure model. To recap:

- Historical industrial activities in the headwaters of KELSET resulted in releases to stormwater and groundwater. The primary industrial sources of those releases were electroplating and various fabrication processes for aircraft manufacturing and maintenance, which date back to circa 1945. The identification of cadmium, chromium, and zinc as COPCs is consistent with those sources.
- The construction of the water impoundment structure and the formation of KELSET Pond created a sink where metals would tend to accumulate and sorb to sediment, thus reducing the loading to the remainder of the KELSET system. Extreme rain events may have resulted in redistribution of some material from KELSET Pond. Sediment deposited to the downstream reaches of KELSET would have been subject to sediment transport mechanics like erosion, resuspension, and distribution.
- Contamination is likely sorbed to fine-grained organic particles that will accumulate in areas of slowermoving water. Sediment contamination can dissociate back into the porewater in a predictable way, and then flux into the overlying water. The relationships between sediment and porewater are important factors that control the bioavailable fraction (i.e., the amount of metal actually able to cause adverse effects or accumulate in tissues).
- The exposure pathways and receptor groups for the Aquatic ERA include the following:
 - Direct contact and uptake of COPCs from surface water and porewater by aquatic plants and invertebrates.
 - Direct contact and uptake of COPCs in sediment by benthic invertebrates.
 - Direct contact and uptake of COPCs in surface water by fish.

4.2 Summary of Approach

The assessment endpoint for the Aquatic ERA is to maintain a healthy aquatic community of aquatic invertebrates, aquatic plants, and fish that are not impacted by unacceptable effects from the residual contamination from the industrial activities in the headwaters of the creek. The Aquatic ERA used a weight-of-evidence approach to evaluate this assessment endpoint.

Weight-of-evidence approaches are well-documented in federal risk assessment guidance (e.g., CCME 2020) as well as BC provincial guidance for detailed ecological risk assessment under the Contaminated Sites Regulation (e.g., SABCS 2011). In brief, weight-of-evidence involves a categorical evaluation of different lines of evidence. The data from each line of evidence is evaluated against a decision criterion and the relative "weight" of each line of evidence is then considered as part of a narrative conclusion about the overall conclusion about risk. The rules for assigning "weight" are largely common-sense, particularly in the current application because the main lines of evidence were limited to chemistry measurements and toxicity testing.

In this application, a measure of exposure (e.g., sediment chemistry) will get less weight than a measure of effect (e.g., sediment toxicity testing). The total concentration of contaminants in sediment or water will get less weight than a chemical measurement focusing on the bioavailable fraction; abiotic media (the non-living components found in sediment and water) are not necessarily indicative of risk because the bulk concentration does not typically provide information about the bioavailable fraction. The lines of evidence that were collected for KELSET for the assessment endpoint are summarized in Table 10 and discussed in more detail in the subsequent sections, following a source-pathway-receptor framework.

Line of Evidence	Basis of Risk Evaluation	Decision Criteria
Sediment chemistry	Compare sediment chemistry to provincial standards with context about how those standards are derived.	A hazard quotient greater than 10x the sensitive standard would be considered to indicate a potential risk.
	Evaluate spatial distribution of sediment contamination in KELSET.	Hazard quotients greater than 10x the sensitive standard would be considered more likely to indicate a potential risk if present on a wide-spread basis.
Surface water chemistry	Compare water chemistry data to provincial ambient water quality guidelines with context about how those guidelines are derived.	A hazard quotient greater than 10x the chronic water quality guideline would be considered to indicate a potential risk.
Peeper (porewater) chemistry	Compare sediment peeper data (porewater) to provincial ambient water quality guidelines with context about how those guidelines are derived.	Evidence that sediment contaminants are dissociating into porewater at elevated concentrations would be considered to indicate a potential risk.
Sediment toxicity testing	Evaluate effects of field-collected sediments using standardized toxicity tests (<i>Chironomus</i> <i>dilutus</i> survival and growth) and comparing the toxicological performance of field-collected sediments to negative controls.	Risks are considered negligible if survival and growth are not reduced by more than 20% relative to the negative control. Samples than have more than a 20% reduction may be considered to indicate a potential risk, subject to consideration of how background samples are performing.
Elutriate toxicity testing	Evaluate effects of field-collected sediments and lab prepared elutriates using standardized toxicity tests (fathead minnow survival and biomass) and comparing the toxicological performance of field-collected sediments to negative controls.	Risks are considered negligible if survival and growth in the 100% (v/v) elutriate are not reduced by more than 20% relative to the negative control.

Table 10: Assessment Endpoints,	Lines of Evidence,	Measurement I	Endpoints, an	d Relevant Risk
Decision Criteria for the Aquatic L	ife Receptors of Co	oncern	-	

4.3 Sediment Chemistry

Maximum sediment concentrations were screened against the BC CSR Schedule 3.4 Generic Sediment Standards for Sensitive Use for the purpose of identifying sediment COPCs (as outlined in Section 1.3). Based on the results, cadmium, chromium, and zinc were identified as sediment COPCs (Table 9). The evaluation of hazard associated with cadmium, chromium, and zinc in this section is based on a more in-depth evaluation of the magnitude and frequency of observed exceedances relative to the underlying toxicology data used to derive the BC sediment standards.

4.3.1 Basis of Guidelines

Provincial (and federal) sediment quality standards are derived using a statistical analysis of a database of fieldcollected sediment samples with synoptic chemistry and toxicity test data (Macdonald Environmental Sciences 2003). A summary of the derivation method is needed to illustrate the degree of conservatism inherent in the sediment quality standards:

- A database of approximately 300 samples with synoptic amphipod (28-d or 42-d Hyalella azteca) toxicity test and sediment chemistry samples was assembled from the literature.
- Chemistry data for each sample was reduced to a representative surrogate value. This was calculated for each sample by dividing the measured concentration of each contaminant by an interim guideline value (typically, the CCME PEL). The average hazard quotient was determined for metals, PAHs, and PCBs separately and then the geometric mean of those three values was calculated (PEL-Q)
- Each sample is also classified as being toxic or not toxic in the chronic *H. azteca* test based on whether it had a statistically significant reduction in endpoint performance (p < 0.05) relative to the laboratory-supplied negative control. Two thirds of the samples in the toxicity database are not toxic.</p>
- The database was sorted in ascending order by PEL-Q and then divided in groups of roughly 15 samples with similar PEL-Q. The geometric mean of the PEL-Q and the incidence of toxicity (i.e., the proportion of the 15 samples that were classified as toxicity) were plotted. The relationship between geomean PEL-Q and the incidence of toxicity was evaluated with a three parameter regression model. Macdonald Environmental Science (2003; Figure 3) provides this equation and notes that it was both highly significant (p = 0.0001) and explained nearly all of the variability in the geomean PEL-Q/incidence of toxicity dataset (R² = 0.99).
- The geometric mean PEL-Q that corresponded to a 20% chance of observing an effect in a toxicity test was determined to be 0.62, and the geometric mean PEL-Q that corresponded to a 50% chance of observing an effect in a toxicity test was determined to be 1.2.
- Therefore, the CCME PEL values for each individual contaminant (e.g., chromium, cadmium, and zinc) were adjusted downward by 0.6 to create the provincial standard for sensitive sites and were adjusted upwards by 1.2 to create the provincial standard for typical sites.

4.3.2 Magnitude and Pattern of Exceedances

The derivation process described in Section 4.3.1 results in highly conservative sediment standards that are not directly connected to the underlying concentration-response relationship for any individual contaminant. The use of a mean PEL-Q to represent sediment concentration means that there are many samples with complex mixtures of contaminants that contain multiple metals as well as PAHs and PCBs. All these contaminants are part of the PEL-Q calculation which will tend to create an upward bias that means that the effects of a simple mixture (i.e., KELSET, which does not have elevated concentrations of PAHs or PCBs) are being over-estimated in the derivation process. The decision to use the 20% and 50% probability of observing a statistically significant effect relative to a negative control is also a highly conservative measurement because the toxicity test is generally considered to be highly sensitive to most major contaminants despite having high variability in test performance based on laboratory conditions (Ivey et al. 2016).

Figure 3 (in-text) provides a ranked-order presentation of the concentration of the three sediment COPCs for context about the magnitude and pattern of exceedances. In brief:

- Chromium and zinc rarely exceed the sediment standards for typical use that correspond to a 50% probability of observing a statistically significant difference in a conservative sediment toxicity test. Cadmium is more commonly greater than this 50% probability threshold, but that does not mean that effects in a sediment toxicity test are likely to occur, given that cadmium was not observed in the porewater peepers (see below for context).
- There is a pattern where concentrations appear to be decreasing in the upper portions of KELSET. This is consistent with typical sediment transport dynamics whereby sediment will be gradually transported downstream during high stream flow events. The removal of contaminated sediment from KELSET within the airport property and at KELSET Pond has removed the source of the metal-rich sediment and thus, sediment transport is gradually reducing sediment in the creek with cleaner material over time.
- There was no evidence that sediment was accumulating in the estuarine area at the mouth of KELSET. Marine sediment samples were collected from surface (0 – 20 cm) and depth (35 – 45 cm) at three locations and concentrations were well below the provincial standards for sensitive marine sites. Note that the derivation of those standards used a similar process as described above and therefore, those standards are highly conservative in terms of screening sediment chemistry data.

4.4 Surface Water Chemistry

Maximum surface water concentrations were screened against the BC Approved Water Quality Guidelines for long-term chronic protection of freshwater aquatic life for the purpose of identifying surface water COPCs (as outlined in Section 1.3). Based on the results, copper and zinc were the only surface water COPCs that were identified (Table 9). The evaluation of hazard associated with copper and zinc in this section is based on a more in-depth evaluation of the magnitude and frequency of observed exceedances relative to the underlying toxicology data used to derive the BC water quality guidelines. A total of nine surface water samples have been collected from KELSET (six by SLR in 2017 and three by WSP in 2021).

4.4.1 Copper

In British Columbia, ambient water quality guidelines for copper are derived using the biotic ligand⁵ model and are expressed in terms of dissolved copper concentrations (BC ENV 2019). In brief, the biotic ligand model predicts the amount of bioavailable copper using site-specific data for pH, hardness, and dissolved organic carbon (Paquin et al., 2002). The bioavailable fraction of copper (M in Figure 4 in-text, also called C_{free}) is what causes adverse effects to aquatic organisms.

Figure 4: Biotic Ligand Model (from Paquin et al. 2002)

Hazard quotients for copper concentrations were determined as follows:

- Dissolved copper concentrations, which were only available in the three samples collected by WSP in 2021, ranged from 2.5 to 3.7 µg/L. Total metal concentrations were also measured in the same three samples and the dissolved to total copper fraction was approximately 66%. This fraction was used to estimate the likely dissolved concentrations for the other six samples collected by SLR in 2017 (i.e., 2.1 to 2.6 mg/L dissolved copper).
- The provincial water quality guideline derived in the biotic ligand model using the geometric mean of the available hardness, pH, and dissolved organic carbon (DOC) measurements for KELSET (hardness = 90 mg/L CaCO₃; pH = 7.2; DOC = 5.5 mg/L) is 1.3 µg/L for the chronic water quality guideline, and 7.8 µg/L for the acute water quality guideline.
- As a result, the likely range of hazard quotients for KELSET is between 1.6 and 2.8 using the range of dissolved copper concentrations and the estimated chronic water quality guideline.

⁵ A biotic ligand is a specific receptor within an organism where metal complexation leads to acute toxicity (Santore et. al 2001).

WSP concludes that chronic hazard quotients in this range are unlikely to represent adverse effects on aquatic organisms because of the conservatism in the biotic ligand model. The model used to generate the water quality guidelines incorporates BLM-based toxicity data from 51 different species (i.e., there is a mathematical relationship between pH, hardness, and DOC and a chronic toxicity endpoint like an EC₂₀ for growth). The model uses the site-specific variables to estimate the threshold toxicity value for each individual species in the toxicity dataset, takes the lowest value, and then applies a 2x safety factor (BC ENV 2019, p32). BC ENV (2019) also summarizes background dissolved copper concentrations from 42 stations throughout Vancouver Island and reports that the 90th percentile of the average concentration is $1.25 \mu g/L$ —in other words, natural sources of copper can account for concentrations that are at the water quality guideline.

4.4.2 Zinc

Water quality guidelines for zinc are hardness-dependent and based on total metal concentrations. One sample (SW21-07) had a measured hardness value of 62 mg/L CaCO₃ which means that its total zinc concentration of 11 μ g/L exceeded the calculated provincial guideline value of 7.5 μ g/L. The other eight samples collected from KELSET consistently had hardness concentrations greater than 100 mg/L CaCO₃ and therefore, WSP concludes that the low value measured in SW21-07 is not representative. The water quality guideline also embeds a 2x safety factor, which means that the marginal exceedance of the water quality guideline is not likely to exceed the toxicity thresholds that the water quality guideline is based on.

4.5 **Peeper Chemistry (Porewater and Surface Water)**

4.5.1 Rationale

Passive samplers are intended to measure the bioavailable fraction of metals (metal ions; C_{free}) that can cause adverse effects to aquatic organisms as those metal ions are absorbed. Meyer et al. (2014) provide an overview of the C_{free} conceptual model for sediment and overlying waters, which is shown below in Figure 5 (in-text). In brief, metals are bound to organic material in sediment in equilibrium with the porewater concentration. This equilibrium is influenced by many variables including the amount of organic carbon, the presence of iron and sulphides (which form insoluble metal precipitates), pH, hardness, and the rates of water movement. There are chemical measurements which can provide insight about the degree of bioavailability (e.g., measuring AVS-SEM can give insight about the relative proportions of extractable metals to sulphides; porewater can be extracted and dissolved metal concentrations measured) but C_{free} can also be directly measured by passive sampling techniques such as peepers. A key advantage to peepers over the extraction of porewater is that peepers provide in situ measurement without the confounding effect of sediment sample collection, homogenization, and centrifugation that would occur in an ex situ porewater chemistry sample. Peepers also provide a time-weighted average of the exposure conditions because concentrations in the vial are constantly moving towards an equilibrium concentration with the surrounding water.

Figure 5: Conceptual Model for Role of Cfree in Risk Assessment (from Meyer et al. 2014)

4.5.2 Methods

Passive samplers (peepers) were deployed at seven locations in KELSET using SPeepers[™] provided by SiREM (Saskatoon, SK). A detailed report is provided in Appendix A, but in brief, a peeper is a small vial of ultra-pure deoxygenated water with a 0.45 µm membrane cap. The vials are deployed to the field location for 28 days and then returned to the analytical laboratory for dissolved metals analysis.

Equilibrium is measured using a bromide spike. The change in bromide concentration is used to determine if the peeper reached a steady state equilibrium with the surrounding water (i.e., bromide is not present at detected concentrations in most water; therefore, if there is no bromide in the peeper after 28-days, the peeper was able to reach 100% equilibrium because the bromide must have diffused out into the surrounding water). Note that it is not a requirement for the peeper to reach equilibrium for the data to be valid. Peeper concentrations are normalized to an assumed 100% equilibrium for consistency, but equilibrium is simply a measure of how the peeper is interacting with the surrounding water to provide context for data interpretation. As an example, a peeper may have a lower-than-expected equilibrium if it is inserted into sediment with a high clay content that would tend to reduce flow across the membrane.

Seven locations were identified in KELSET to provide spatial coverage and to target known areas of elevated sediment concentrations, as shown in Table 11. Peepers were deployed in two ways to investigate different parts of the sediment-porewater-surface water pathway as shown on the conceptual model in Figure 5 (in-text). A peeper was inserted into sediment to measure the in situ porewater concentrations at all seven locations. A second peeper was placed at the sediment-water interface at three locations (upper, middle, and lower KELSET) to measure the flux of metals that might be passing from sediment into the overlying water column. These overlying water peepers were also co-located with surface water samples as a check on whether the snap-shot water concentrations are representative of the long-term chronic concentrations measured over the 28-d exposure period.

Station	Sample Location	Chemistry Sample ID	Percent Steady-State	Comments
01	PS21-01	06169-02	71.3%	Data representative of porewater
	PW21-01	06169-04	51.1%	Data representative of surface water
02	PS21-02	06169-01	34.9%	Location damaged by high water flow. Data more likely representative of surface water conditions.
03	PS21-03	06169-03	100%	Location damaged by high water flow. Data more likely representative of surface water conditions.
	PW21-03	06169-06	48.2%	Data representative of surface water
04	PS21-04	06169-05	100%	Data representative of porewater
05	PS21-05	06169-08	99.4%	Data representative of porewater
06	PS21-06	06169-09	100%	Data representative of porewater
07	PS21-07	06169-07	47.1%	Data representative of porewater
	PW21-07			Lost during flooding event

Table 11: Peeper Summary of Locations and Comments

Note that peepers were deployed in late October 2021, which meant that they were in place during the extreme rainfall event that started in the middle of November and extended over several weeks. WSP was able to retrieve the majority of peepers safely, but several peepers were scoured from their original locations. WSP opted to submit all retrieved peepers for analysis. Note that movement of the peeper does not mean that the data are invalid—it only means that there may be some uncertainty about whether the concentrations are representative of the original sample location.

4.5.3 Results and Interpretation

Peeper chemistry data are provided in Table B-3 and discussed in the sections below.

Evidence of Sediment as Contaminant Source

The five peepers (PS21-01, PS21-04, PS21-05, PS21-06 and PS21-07) that are considered representative of in situ porewater concentrations provide information about the role of sediment as a source of metals. Cadmium, chromium, and zinc were identified as sediment contaminants of concern and all three metals are consistent with the known industrial source. However, chromium was not detected in any of the five peepers. The detection limit in the peeper was $1.5 \ \mu g/L$ for total chromium (relative to a working ambient water quality guideline of $8.9 \ \mu g/L$). No cadmium or zinc was detected in any of the five peepers. WSP concludes that the porewater peeper data indicates that the total concentrations of these metals in sediment is unlikely to be bioavailable (i.e., it is not dissociating into porewater at elevated concentrations).

Evidence of Surface Water Influences

Two peepers (PW21-01 and PW21-03) were deployed in surface water and an additional two peepers (PS21-02 and PS21-03) are likely to be more representative of surface water conditions because they were scoured from their original porewater placement because of extreme water flows. These peepers tended to have detectable concentrations of copper consistent with the observed surface water chemistry samples which provides further context that copper is present from natural background issues and is not a site-specific contaminant. Copper concentrations should be interpreted in the context of the ambient water quality guideline described in the preceding section, and these observed water concentrations in the surface water peepers had a consistent (and low) level of hazard, as did the surface water chemistry. Zinc was also detected in three of the surface water peepers which provides further context that surface water quality is being influenced by sources other than sediment (i.e., zinc is not detected in sediment porewater but is detected in surface water).

4.6 Sediment Toxicity Testing

A detailed discussion of the sample collection and toxicity test method is provided in Appendix A, but in brief,

- Fifteen sediment samples were collected from KELSET for concurrent chemistry and toxicity assessment. These sediment locations were selected to provide spatial coverage of KELSET and included the areas with known sediment contamination. Samples were collected from areas with similar grain size distributions (e.g., fine-grained sand) to minimize this potential confounding effect.
- A background sample was selected from TENTEN from amongst three samples with a similar grain size as the samples from KELSET. Note that the concentrations of cadmium and chromium (i.e., the contaminants of concern that originate from the historical industrial activities) in the sample were 0.17 and 26 mg/kg, respectively, both below most other samples collected in KELSET. The TENTEN background location was not intended to be representative of pristine conditions---it was intended to be representative of an urbanized creek that does not have the same point sources of contamination as KELSET.
- All sixteen samples were tested using the 10-d Chironomus dilutus survival and growth sediment toxicity test according to procedures described by Environment Canada (1997, EPS 1/RM/32). WSP opted to focus on the chironomid test because chironomids burrow into fine-grained sediment and are exposed via direct contact and ingestion. Another common freshwater sediment toxicity test is the Hyalella azteca 14-d survival and growth test (Environment Canada 2017, EPS 1/RM/33), but this species lives on the sediment surface with less interaction with sediment. A more intensive sampling program with one test species was selected so that statistical analyses to correlate sediment chemistry and toxicity could be conducted if necessary.

The results of the sediment toxicity testing are provided in Table 12 and Table 13. The recommended decision criterion for sediment toxicity tests is whether a sample has more than a 20% reduction in endpoint performance (Environment Canada 1997) relative to the negative control. For the samples collected from KELSET, the range of reduction in chironomid survival ranged from 8% to a 2% increase relative to the negative control, while chironomid growth increased from 2% to 49% relative to the negative control; none of the samples were reduced by more than 20% relative to the negative control. Chironomid growth was consistently higher in the KELSET samples than in the laboratory-provided negative control. Chironomid survival and growth in the KELSET samples were also not different than what was observed in the TENTEN background samples. Note that the same background sample was used in both batches of samples, and the minor reduction in survival observed in the November 19 batch of samples was not duplicated in the November 26 sample. WSP concludes that these toxicity test data indicate a potential for low risk based on the decision criteria described in Table 10. It was not

necessary to pursue a detailed statistical analysis to determine if cadmium, chromium, or the other metal COPCs were contributing to an adverse effect because no effects in the toxicity tests were observed.

Table 12: Results: Chironomus dilutus Survival and Growth Toxicity Test Results (November 19, 2021)

Comple ID	Mean ± Standard Deviation		
	Survival (%)	Dry Weight (mg/organism)	
Control Sediment	100 ± 0.0	1.88 ± 0.09	
06188-04 (TENTEN)	84.0 ± 11.4ª	2.76 ± 0.37	
06186-01 (SED21-28)	96.0 ± 5.5	2.66 ± 0.46	
06186-02 (SED21-29)	94.0 ± 8.9	2.80 ± 0.57	
06186-03 (SED21-30)	92.0 ± 13.0	2.69 ± 0.61	
06186-04 (SED21-31)	94.0 ± 5.5	2.45 ± 0.64	
06186-05 (SED21-32)	98.0 ± 4.5	2.28 ± 0.12	
06186-06 (SED21-33)	100.0 ± 0.0	2.52 ± 0.29	
06186-07 (SED21-34)	92.0 ± 8.4	2.71 ± 0.23	
06186-08 (SED21-35)	98.0 ± 4.5	2.52 ± 0.25	

Notes: mg = milligrams; a Indicates a statistically significant effect relative to the negative control sediment.

Table 13: Chironomus dilutus Survival and Growth Toxicit	y Test Results (November 26, 2021)
--	------------------------------------

Comple ID	Mean ± Standard Deviation			
	Survival (%)	Dry Weight (mg/organism)		
Control Sediment	98.0 ± 4.5	1.94 ± 0.22		
06188-04 (TENTEN)	94.0 ± 8.9	2.08 ± 0.37		
06186-09 (SED21-36)	94.0 ± 5.5	1.98 ± 0.21		
06186-10 (SED21-37)	94.0 ± 8.9	2.34 ± 0.36		
06186-11 (SED21-38)	88.0 ± 4.5	2.21 ± 0.57		
06186-12 (SED21-39)	100.0 ± 0.0	2.43 ± 0.20		
06188-01 (SED21-40)	96.0 ± 8.9	2.51 ± 0.33		
06188-02 (SED21-41)	94.0 ± 8.9	2.51 ± 0.29		
06188-03 (SED21-42)	100.0 ± 0.0	2.61 ± 0.44		

Notes: mg = milligrams

4.7 Sediment Elutriate Toxicity Testing

An additional check on potential toxicity associated with sediment was conducted for larval fish. A detailed discussion of the sample collection and toxicity test method is provided in Appendix A, but in brief:

- A sediment elutriate⁶ was prepared by mixing sediment from the location with the highest cadmium concentration (SED21-40) with surface water collected from KELSET from sampling location SW-21A. The elutriate was a ratio of 1:4 sediment:water by volume which was stirred continuously for 30 minutes. The mixture was allowed to settle for 30 minutes, the overlying water was extracted using a siphon, and that volume of water was centrifuged to reduce the suspended solids. The net effect is that the water sample represents a worst-case estimate of the dissolved metal loading to the water column that might occur if an area of contaminated sediment was disturbed (e.g., during freshet).
- The elutriate was tested using the 7-d Pimephales promelas survival and biomass toxicity test (Environment Canada 2011, EPS 1/RM/22). This is a chronic test that measures effects to larval fish that have recently hatched (i.e., the fish are less than 24 hours old at the start of the test). There were several different test concentrations, including:
 - A laboratory-provided negative control
 - A site control (i.e., 100% KELSET water without any sediment)
 - The 100% (v/v) test concentration (i.e., the full-strength elutriate)

The results from the elutriate toxicity test are summarized below in Table 14. Subsamples of water were collected from each test concentration prior to test initiation and analyzed for total and dissolved metals. Chemistry data from the elutriate test are provided in Appendix B-4. Total concentrations of multiple metals in the 100% (v/v) test concentration exceeded ambient water quality guidelines, which is unsurprising for an elutriate made from a fine-grained sample. SED21-40 consisted of 16% clay, 39% silt, and 42% sand (see Appendix B-1 for grain size data) and the elutriate sample would have been relatively turbid despite the 30-min settling and centrifugation steps. Concentrations of dissolved cadmium and copper in the 100% (v/v) test concentration also exceeded ambient water quality guidelines and were higher than the dissolved concentrations in the site control, which confirms that the elutriate was successful in simulating the desired worst-case scenario where metals were remobilized to the water column.

There were no significant effects in the 100% (v/v) test concentration, notwithstanding the presence of total metals (and dissolved concentrations of cadmium and copper) that exceeded ambient water quality guidelines. The minor reductions in larval fish growth in the 100% and 50% (v/v) test concentrations were less than the decision criteria (i.e., a 20% reduction in endpoint performance) and all samples made from KELSET water resulted in larval fish growth that was higher than the laboratory negative control. WSP concludes that these toxicity test data indicate a potential for low risk based on the decision criteria described in Table 10.

⁶ Elutriation is the process of separating lighter particles from heavier ones by suspension in an upward flow of liquid or gas.

Concentration (0/ y/y)	Mean ± SD		
	Survival (%)	Biomass (mg/organism)	
Laboratory Control	100.0 ± 0.0	0.22 ± 0.01	
Site Control	100.0 ± 0.0	0.54 ± 0.03	
1.56	100.0 ± 0.0	0.50 ± 0.02	
3.12	100.0 ± 0.0	0.50 ± 0.05	
6.25	90.0 ± 10.0	0.45 ± 0.05	
12.5	100.0 ± 0.0	0.50 ± 0.08	
25	100.0 ± 0.0	0.56 ± 0.11	
50	96.7 ± 5.8	0.47 ± 0.04	
100	96.7 ± 5.8	0.48 ± 0.02	

Table 14: Fathead Minnow Survival and Biomass Toxicity Test Results (November 19, 2021)

Notes: SD = Standard Deviation, mg = milligrams.

5.0 CONCLUSIONS

This section provides the overall conclusions about human health and ecological risks for KELSET and its riparian area below the water containment structure (i.e., KELSET Pond). A portion of KELSET where the riparian areas are privately owned was not directly sampled in this current scope of work. These conclusions are based on the problem formulation and the detailed quantitative risk assessment conducted for aquatic receptors. The conclusions should take into consideration the uncertainty analysis which is also provided in this section. These conclusions are written in a narrative format to assist the custodial agency in risk management and risk communication efforts with stakeholders and rightsholders.

Human Health

There were no contaminants of concern identified in surface water, sediment, or riparian soils that would indicate an issue with respect to human receptors who might use the area as an urban park. Data were compared to conservative standards and guidelines (i.e., BC CSR numerical standards and federal guidelines for the protection of human health) and no contaminants of concern were identified. The human health risk assessment ended at the problem formulation stage.

The key area of uncertainty with respect to human health relates to whether a park user is the appropriate receptor to evaluate the risks that may be important to rightsholders or stakeholders. We note that the default assumption is that the riparian areas of KELSET are not being used as a source of food, which is consistent with urban park land use, but we appreciate that there may be alternative land uses that the custodial agency and rightsholders may agree should be evaluated. The current data are not sufficient for that additional level of evaluation (i.e., no plant chemistry samples have been analyzed). A small number of plant samples were collected and are available for analysis if needed, but we caution that rightsholders may focus on specific plants or locations that are not reflected by our initial sampling. No tissue samples have been collected for fish or shellfish—there was a significant chemical release by an unknown third party to KELSET during our investigation, which would have been a major confounding factor in terms of sampling.

Terrestrial Ecological Health

There were no contaminants of concern with respect to surface water or soils that would indicate that risks to terrestrial ecological receptors would be present. BC CSR numerical soil standards and federal guidelines for the protection of soil invertebrates and plants (urban park land use) were used for this screening as a reality check that if the soil concentrations were lower than the applicable criteria, it would be highly unlikely that intrusive remediation of riparian soils would be needed. The terrestrial ecological risk assessment ended at the problem formulation stage.

The key area of uncertainty is similar to that for the human health risk assessment. Although soil concentrations throughout the riparian areas of KELSET were lower than the urban park land use standards/guidelines and were also lower than the agricultural standards (which includes a bioaccumulation check for uptake by plants to protect livestock), we recognize that cadmium can bioaccumulate in plants and soil invertebrates, and there is not currently a specific risk calculation to show that bioaccumulation is in fact negligible. A small number of plant samples were collected and are available for analysis if needed. Our general practice is that we would only pursue food chain modelling if there was site-specific tissue chemistry data available for each of the major food

items that could be consumed by wildlife receptors. No tissue samples were available for fish or aquatic invertebrates, which would make food chain modelling impractical for many of the wildlife receptors who are feeding in KELSET and its riparian areas. Our observation is that it is important to have alignment about how a wildlife risk assessment would be used to help make informed site management decisions before initiating that type of analysis. Most wildlife risk assessments involve a hazard quotient approach where highly conservative assumptions about exposure are compared to highly conservative assumptions about toxicity reference values. These screening-level calculations tend to have minimal value for making site management decisions. Stakeholders and rightsholders may have specific receptors that they would wish to see reflected in a food chain model.

Aquatic Ecological Health

Several metals (i.e., cadmium, chromium, copper, and zinc) were identified as contaminants of concern in sediment or surface water, and therefore, the aquatic ecological risk assessment proceeded to a quantitative risk analysis. This risk analysis used a weight-of-evidence approach where the data about total metal concentrations were supplemented by information about bioavailability (peeper chemistry) and effects (sediment toxicity testing, elutriate toxicity testing). Benthic community analysis is another commonly used line of evidence but was not considered for KELSET because any sampling would have been conducted after a significant release by a third party that would presumably have caused adverse effects to aquatic organisms. Each individual line of evidence was discussed separately in the preceding section, but as an overall narrative, WSP concludes that risks to aquatic organisms from historical contamination associated with the industrial activities at the airport are low based on the following:

- Sediment concentrations were not grossly elevated relative to numerical standards. The numerical standards are highly conservative in terms of their ability to predict adverse effects. There was one location (RC17-11) that had a cadmium concentration of 35 mg/kg (i.e., it is greater than 10x the lowest applicable standard), but this location was sampled in 2017 and six additional step-out samples collected by Golder (2021b) were unable to duplicate the high concentration. There is a pattern where ongoing sediment transport from the upper reaches of KELSET appears to be reducing concentrations over time—we would expect that long-term reduction in sediment concentrations to continue now that the main source of sediment contamination has been removed.
- Notwithstanding the presence of cadmium, chromium, and zinc in sediment, there was limited evidence of those metals in porewater. Sediment peepers provide a direct measurement of this important part of the bioavailability pathway, and peeper concentrations were not detectable for these key metals. We are obliged to comment that peepers were deployed during the extreme rainfall event in mid November 2021, which scoured out several embedded locations. It is not clear if the peepers in surface water would be representative of typical water concentrations given that the water flows during that time were considered to exceed a 1:50 year flood event, but regardless, the general absence of the key metals in the porewater peepers is still considered reliable and representative.
- Notwithstanding the presence of cadmium, chromium, and zinc in sediment, we note that there were no significant effects on chironomid survival or growth. This is a key observation given the number of samples collected for toxicity tests and how those samples captured the range of observed sediment concentrations. The worst-case sediment sample collected by WSP was used to simulate a resuspension event where

metals were released back into the water column because of sediment disturbance. There were no significant effects in the 100% (v/v) elutriate sample observed.

 There were no exceedances of numerical sediment standards/guidelines observed in marine samples collected at the mouth of KELSET.

WSP has a high degree of confidence in the conclusion that sediment concentrations in KELSET are not likely to result in adverse effects to sediment-dwelling organisms and juvenile fish given the findings described above. The key uncertainty is similar to that for the terrestrial ecological risk assessment in that the uptake of cadmium (and to a lessor extent, chromium) has not been directly measured, and therefore, it is not possible to complete a quantitative risk analysis for semi-aquatic wildlife pathways. The finding from the sediment peepers (and surface water) that cadmium and chromium are not fluxing into the overlying water suggests that bioaccumulation may be limited, but direct evidence for that pathway is not currently available.

5.1 Engagement Activities

As a result of the uncertainties identified above, WSP presented the results of the draft HHERA to the WSÁNEĆ Leadership Council (WLC) Technical Advisory Committee during a virtual meeting held on 19 January 2023. In addition to presenting the objectives, methods, and results of the draft HHERA, WSP described the uncertainties with the assessment and requested input into future risk assessment activities at KELSET, if required. During the engagement meeting, the WLC expressed concerns with bioaccumulation of contaminants/pollutants into food items and with cumulative effects on food sources/food security. Based on the feedback received during the meeting, the WLC Technical Advisory Committee had no concerns with the results of the draft HHERA, and the HHERA was finalized (this document). A technical memorandum summarizing the results of the engagement meeting is provided in Appendix E.

6.0 CLOSURE

We trust this information is sufficient for your needs at this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

WSP Canada Inc.

Alexis Fast, MEDes, RPBio, PMP Project Manager, Lead Environmental Scientist

AF/EVK/asd

Erik von Krogh, RPBio, PMP Project Director, Senior Principal Environmental Scientist

https://wsponlinecan.sharepoint.com/sites/ca-ca00078675135/shared documents/06. deliverables/3.0_issued/ca0007867.5135-004-r-rev0/ca0007867.5135-004-r-rev0-hhera kelset 02feb_24.docx

7.0 **REFERENCES**

- BC CDC (British Columbia Conservation Data Centre). 2022a. CDC iMap web application. BC Ministry of Environment, Victoria, BC.
- BC CDC. 2022b. BC Species and Ecosystem Explorer. BC Ministry of Environment, Victoria, BC.
- BC ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2017. Concentration Limits for the Protection of Aquatic Receiving Environments. Technical Guidance on Contaminated Sites #15 (TG15), Version 2.0. November 1, 2017.
- BC ENV. 2019. Copper water quality guideline for the protection of freshwater aquatic life: technical report. WQG-03-L
- BC ENV. 2021. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife, and Agriculture. February 2021. Ministry of Environment and Climate Change Strategy, Water Protection and Sustainability Branch.
- BC ENV. 2023a. Contaminated Sites Regulation (CSR; BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023).
- BC ENV. 2023b. Environmental Management Act, Contaminated Sites Regulation, including amendments up to BC Reg 128/2022 amendments effective March 2023.
- BC ENV 2023c. British Columbia Approved Quality Guidelines: Aquatic Life, Wildlife, and Agriculture. Guideline Summary – August 2023. Ministry of Environment and Climate Change Strategy, Water Protection and Sustainability Branch.
- BC ENV. 2023d. Protocol 4 for Contaminated Sites Establishing Local Background Concentrations in Soil (version 14). Updated 20 March 2023.
- BC ENV. 2023e. Protocol 1 for Contaminated Sites Detailed Risk Assessment (version 4.0). Updated 20 March 2023.
- BC Ministry of Forests. 1999. The ecology of the coastal Douglas-fir zone. Brochure ed. Brian Egan. Accessed December 2021. Available online at: https://www.for.gov.bc.ca/hfd/pubs/docs/Bro/bro30.pdf/
- Camosun College. 2018. A Natural History of Reay Creek: Examining the biodiversity of riparian flora downstream from federally designated contaminated site on Saanich Peninsula. Authored by A. Sherwood, M Franke, and R Fitzpatrick as part of the Camosun College Environmental Technology Program.
- CCME (Canadian Council of Ministers of the Environment). 1999. Protocol for the Derivation of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines. Available online at: https://ccme.ca/en/res/protocol-for-the-derivation-of-canadian-sediment-qualityguidelines-for-the-protection-of-aquatic-life-en.pdf
- CCME. 2007. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment. Winnipeg, MB.

- CCME. 2020. Ecological Risk Assessment Guidance Document. Canadian Council of Ministers of the Environment, 2020. Golder (Golder Associates Ltd.)
- Environment Canada. 1999. Canadian Soil Quality Guidelines for Arsenic. Scientific Supporting Document. National Guidelines and Standards Office, Environmental Quality Branch, Environment Canada. Ottawa.
- Environment Canada. 1997. Biological test method: test for survival and growth in sediment using the larvae of freshwater midges (*Chironomus tentans* and *Chironomus riparius*). Environmental Protection Series 1/RM/32. December 1997. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 131 pp.
- Environment Canada. 2011. Biological test method: test of larval growth and survival using fathead minnows. Environmental Protection Series 1/RM/22, Second Edition, March 2011.
- Environment Canada. 2017. Biological test method: test for survival, growth and reproduction in sediment and water using the freshwater amphipod *Hyalella Azteca*. Environmental Protection Series 1/RM/33, Third Edition, September 2017.
- Golder (Golder Associates Ltd.). 2021a. Data Review and Gap Analysis, and High Level Sampling Analysis Plan for KELSET (Reay) Creek, Sidney, BC. Dated 25 March 2021. Internal Reference No. 21455123-001-L-Rev0.
- Golder. 2021b. Supplemental Sediment Sampling in Support of Risk Management at KELSET (Reay Creek) in Victoria, BC. Dated 13 December 2021. Internal Reference No. 21455123-055-L-Rev0.
- Government of British Columbia. 2022. Groundwater Wells and Aquifers Well Search database. Available online at: https://apps.nrs.gov.bc.ca/gwells/. Accessed February 2022.
- Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroalkylated Substances (PFAS). May 2019.
- Health Canada. 2021. Federal Contaminated Sites Risk Assessment in Canada, Part I Guidance on Human Health Preliminary Quantitative Risk Assessment, Version 3.0. March 2021.
- Health Canada. 2022. Guidelines for Canadian Drinking Water Quality. Summary Tables. September 2022.
- Ivey CD, Ingersoll CG, Brumbaugh WG, Hammer EJ, Mount DR, Hockett JR, Norberg-King TJ, Soucek D, Taylor L. 2016. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca. Environ Toxicol Chem 35:2439-47.
- Macdonald Environmental Services. 2003. Development and application of sediment quality criteria for managing contaminated sediment in British Columbia. Available online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/site-remediation/docs/policies-and-standards/develop_applicat_sqc_rep_nov19_wma.pdf
- Macdonald RW and Bruce ID. 2015. An Investigation of Contamination in Reay Creek Pond Sediments. Available online at: http://www.sidney.ca/Assets/Administration/2015/Reay+Creek+Pond+Sediments.pdf. Accessed March 2022.
- MB Laboratories Ltd. 2005. Reay Creek Risk Assessment Study September 2005. MB, Sidney, BC.

- Meyer P, TF Parkerton, RG Adams, JG Cargill, J Gan, T Gouin, PM Gschwend, SB Hawthorne, P Helm, G Witt, J You and BI Escher. 2014. Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr Environ Assess Manage 10: 197-209
- Millennia Research Limited. 2021. KEL,SET (Reay) Creek Pond Remediation Project Archaeological Support Services. Letter report for SLR Consulting (Canada) Ltd. dated March 5, 2021.
- Paquin, P.R., Gorsuch, J.W., Apte, S. Batley, G.E., Bowles, K.C., Campbell, P.G.C., Delos, C.G., Di Toro, D.M., Dwyer, R.L., Galvez, F., Gensemer, R.W., Goss, G.G., Hogstrand, C., Janssen, C.R., McGeer, J.C., Naddy, R.B., Playle, R.C. Santore, R.C., Schneider, U., Stubblefield, W.A., Wood, C.M., and Wu, K.B. 2002. The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 133: 3-35.
- SABCS (Science Advisory Board for Contaminated Sites). 2011. Guidance for a weight-of-evidence approach in conducting detailed ecological risk assessment (DERA) in British Columbia. Prepared by Exponent Inc. Available online: http://www.sabcs.chem.uvic.ca/docs.html
- Santore, R.C, D.M. DiToro, P.R. Paquin, H.E. Allen and J.S. Meyer. 2001. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem. 2001 20(10): 2397-402.
- SLR (SLR Consulting (Canada) Ltd.). 2018a. Phase I Environmental Site Assessment Reay Creek (on Victoria Airport Lands), Sidney, BC. Report prepared for Public Services and Procurement Canada. January 2018. SLR Project No: 201.88702.00000.
- SLR. 2018b. Reay Creek Downstream Sediment and Surface Water Assessment. Reay Creek, Sidney and North Saanich, BC. Report prepared for Public Services and Procurement Canada, dated January 2018. SLR Project No: 205.03892.00000.
- SLR 2019a. Phase II Environmental Site Assessment Reay Creek (on Victoria Airport Lands), Sidney, BC. Report prepared for Public Services and Procurement Canada. January 2018. SLR Project No: 201.88702.00001.
- SLR 2019b. Reay Creek Remediation Project: Supplemental Sediment Sampling and Probing on Airport Lands. Technical Memorandum prepared for Public Services and Procurement Canada. March 2019. SLR Project No: 205.03982.00003.
- SLR 2020. Confirmation of Remediation KELSET (Reay Creek) Reay Creek Victoria International Airport, North Saanich, BC. Report prepared for Public Services and Procurement Canada. March 2020. SLR Project No: 201.88702.00005.
- SLR 2021a. Confirmation of Remediation KELSET (Reay Creek) Reay Creek Pond, Sidney BC. Report prepared for Public Services and Procurement Canada. March 2021. SLR Project No: 205.03892.00009.
- SLR 2021b. Characterization of Soil and Sediment from KELSET (Raey) Creek Pond Bank Adjacent to 9461 Braun Crescent, Sidney, BC. Technical Memorandum prepared for Public Services and Procurement Canada. February 2021. Project No. 205.03892.00009.
- Thurber (Thurber Engineering Ltd.). 2019. Reay Creek Environmental Testing and Analytical Results. Memorandum to the Town of Sidney. June 20, 2019.

US EPA (United States Environmental Protection Agency). 2016. ProUCL Statistical software, Version 5.1.002.

Victoria International Airport. 2018. Victoria Airport Authority Receives British Columbia Aviation Council (BCAC) Environmental Award for TenTen Creek Remediation. October 24, 2018. Accessed March 5, 2022. Available online: https://www.victoriaairport.com/news/2018/victoria-airport-authority-receives-britishcolumbia-aviation-council-bcac-environmental-award-for-tenten-creekremediation#:~:text=About%20the%20TenTen%20Creek%20Remediation,water%20quality%20in%20the% 20steam.

25 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED

- REFERENCE(S)
 AERIAL IMAGE (2019) OBTAINED FROM THE CAPITAL REGIONAL DISTRICT ON 2021-03-24 IMAGE GEOREFERENCED BY WSP AND INTENDED FOR INDICATIVE PURPOSES ONLY
 LOT BOUNDARIES OBTAINED FROM BC LAND TITLE AND SURVEY ON 2018-03-24
 WATERCOURSE, SAMPLE LOCATIONS, AND SITE FEATURES ARE BASED ON SLR REPORT (2018a) AND ARE APPROXIMATE
 DATUM: NAD83, PROJECTION: UTM ZONE 10

THIS DRAWING IS INTENDED FOR CLIENT'S ONE TIME USE ONLY AND IT IS NOT INTENDED OR REPRESENTED BY WSP TO BE SUITABLE FOR REUSE BY ANY PARTY, INCLUDING, BUT NOT LIMITED TO, THE CLIENT, ITS EMPLOYEES, AGENTS, SUBCONTRACTORS OR SUBSEQUENT OWNERS ON ANY EXTENSION OF A SPECIFIC PROJECT OR FUTURE FRANCE: SWETHER LEURIST OR OTHERWISE, WITHOUT WSP FRAVOR WITHET PREMISSION, ANY MANUPLLATION, WSP EXPRESSIV, DISCLAMS, ALL LIABULTY AGAINST ALL. THEID PARTIES RELYING, USING OR MARING DECISIONS ON THIS DRAWING, THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING, USING OR MARING DECISIONS ON THIS DRAWING, THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING, USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES RELYING. USING OR MARING DECISIONS ON THIS DRAWING. THIRD PARTIES DO SO AT THEIR OWNERS, EXCEPT WHERE WRITTEN AGAINST ALL THEID PARTIES DO SO AT THEIR OWNERS, EXCEPT WRITTEN AGAINST ALL THEID PARTIES DO SO AT HEIR OWNERS, EXCEPT WRITTEN AGAINST ALL THEID PARTIES DO SON THIS DRAWING AGA

CLIENT PUBLIC SERVICES AND PROCUREMENT CANADA

PROJECT

DETAILED HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT KELSET, DOWNSTREAM OF KELSET POND

TITLE SURFACE WATER AND POREWATER SAMPLING LOCATIONS IN **KELSET**

CONSULTANT		YYYY-MM-DD	2023-11-09	
		DESIGNED	DR	
		PREPARED	RTJ	
	_	REVIEWED	AF	
		APPROVED	BGM	
PROJECT NO. PHASE/T CA0007867 5135 3000/4	ASK	RE 0	V.	FIGURE

APPENDIX A

Data Collection Activities Completed by WSP in Fall 2021

1.0 BACKGROUND

KELSET originates at the Victoria International Airport, which is located on federal land leased to the Victoria Airport Authority; Transport Canada operated the airport from 1939 to 1997 prior to the current leasing arrangement. From the airport, KELSET flows east through a culvert at Canora Road and into KELSET Pond. The water flows out of KELSET Pond towards the southeast through the Town of Sidney, crossing through two municipal parks bordered predominantly by private residential housing toward a culvert under Patricia Bay Highway, within the District of North Saanich. From Patricia Bay Highway, KELSET flows though privately owned land and terminates in Bazan Bay.

Historical activities at the airport reportedly contributed to metal contamination in KELSET. As such, sediment remediation and habitat restoration programs were completed by PSPC on behalf of Transport Canada for KELSET within the airport property in 2019/20 and at KELSET Pond in 2020/21. Golder conducted a data review and data gap analysis of the sediment and surface water assessment conducted by SLR Consulting (Canada) Ltd. in KELSET downstream of KELSET Pond (SLR 2018) and developed a tiered strategy for supplemental site characterization and detailed risk assessment (Golder 2021a). In June 2021, Golder conducted an initial supplemental sampling investigation (SSI) to collect sediment data from 27 locations and presented those results in the report, "Supplemental Sediment Sampling in Support of Risk Management at KELSET (Reay Creek) in Victoria, BC", dated 13 December 2021 (Golder 2021b). Further sampling to support the detailed ecological and human health risk assessment (HHERA) was recommended and are described in this appendix.

Note that the HHERA included all available surface water, soil and sediment data collected from the study area (e.g., SLR 2018, Golder 2021b and this current appendix).

2.0 SCOPE OF WORK

The overall objective of the additional SSI was to support the detailed HHERA. Data collection included:

Aquatic Sampling

- KELSET sediment sampling: Collection of sediment samples from 15 locations in KELSET, which were analyzed for metals, grain size, and total organic carbon, and submitted for 10-day chironomid toxicity testing.
- Background sediment sampling: Collection of sediment samples from three locations in an urbanized background creek (TENTEN), which were analyzed for metals, grain size, and total organic carbon. Based on the chemistry results, the worst-case sediment sample from TENTEN was submitted for 10-day chironomid toxicity testing.
- Elutriate toxicity testing: Based on the chemistry results, the worst-case sediment sample from KELSET was
 used to create an elutriate for a 7-day fathead minnow survival and growth test.
- Passive samplers: Deployment of passive samplers ("peepers") in seven locations in KELSET, representing a range of previously observed metals concentrations. Each location had a peeper pushed into the sediment to measure metals concentrations in porewater. At three locations (upper, middle, and lower KELSET), a second peeper was placed in the water column and a surface water sample was collected and analyzed for total metals, dissolved metals, pH, hardness, and dissolved organic carbon (DOC). Three additional peepers were analyzed as trip blanks.

Riparian Sampling

- Soil sampling: Collection of soil samples from 20 locations along the length of KELSET, which were analyzed for metals, total organic carbon, and grain size. Soil samples were located along the length of KELSET, focussed on areas with low gradients where spring freshets could have deposited material.
- Vegetation sampling: Soil sampling locations were co-located with plant forage species including alder leaves, dogwood leaves, and blackberries. Samples were frozen and archived for potential future analysis.
- Earthworm sampling: Select soil sampling locations were also co-located with earthworm samples, which were frozen and archived for potential future analysis.

2.1 Deviation from Proposed Scope of Work

The following deviations from the proposed scope of work are noted:

- Collection of additional tissue types were planned but could not be collected. An opportunistic search of
 aquatic invertebrates occurred, but insufficient quantities were collected for analysis, and malaise traps were
 not deployed due to scheduling constraints.
- Due to high rainfall and flooding, three passive samplers (peepers) became detached from their sampling locations (information provided in Section 3.4).
- The elutriate testing included chemical analysis of the dilutions (as discussed in Section 3.2). However, dissolved metals were not analyzed in several of the dilutions due to filtration issues resulting from high particulate in the higher concentration dilutions.
- For soil samples, the laboratory reported chromatographic interference, which prevented measurement of speciated chromium.

3.0 SAMPLE COLLECTION METHODS

The field program was carried out over several mobilizations by WSP staff and a cultural monitor from the Tseycum First Nation as summarized in Table 1. The following sections describe the methods carried out for the SSI.

Dates of Field Program	Description of Field Activities Completed
16 September 2021	Blackberry sampling
20 - 21 October 2021	Sediment sampling in KELSET
22 October 2021	Sediment sampling in TENTEN (background creek)
25 - 26 October 2021	Deployment of peepers
26 - 29 October 2021	Co-located soil, vegetation, and earthworm sampling
8 November 2021	Collection of surface water for generation of elutriate
24 November 2021	Retrieval of peepers and opportunistic macroinvertebrate sampling (unsuccessful)

Table 1: Summary of Field Investigations

3.1 Health, Safety, and Environment Plan

Prior to undertaking the field investigation program, the project-specific health, safety, and environment plan (HaSEP) was updated to reflect current site conditions and planned activities. The HaSEP described potential risks associated with the field tasks and included measures to mitigate the identified risks. The HaSEP included safe work procedures, accident reporting procedures, Site location and route to the hospital plans, an emergency response plan, emergency contact and telephone numbers, and check-in procedures.

At the beginning of the first day of the field program, the HaSEP was communicated to WSP staff and subcontractors. Daily tailgate safety meetings and hazard assessments were held onsite to review the day's field tasks and associated potential risks, and to assess if Site conditions changed and/or if modifications to the HaSEP were required.

3.2 Sediment Sampling

Sediment sampling was undertaken in KELSET from 20 to 21 October 2021, and in TENTEN on 22 October 2021. The sediment sampling program and laboratory analysis is summarized in Table 2 and illustrated on Figures 2 and 5 in the main report.

Location	Number of samples	Analysis	Laboratory	Notes
KELSET	15 plus two duplicates	Metals, speciated chromium, TOC, and grain size	AGAT	
	15	Toxicity (10-day chironomid)	Nautilus	
	1	Elutriate toxicity (7-day fathead minnow survival and growth test)	Nautilus	Worst-case metals concentrations in KELSET were used to select one sample to generate an elutriate for toxicity testing
TENTEN	3 plus one duplicate	Metals, speciated chromium, TOC, and grain size	AGAT	Extra sample volume was collected at each location for potential toxicity testing
	1	Toxicity (10-day chironomid)	Nautilus	Worst-case metals concentrations in TENTEN were used to select one sample for toxicity testing

Table 2: Summary of Sediment Sampling

Surface sediment grab samples were collected at depths up to 0.1 m below ground surface (mbgs) from each sampling location using a shovel. If multiple grab samples were required to fill the laboratory-supplied containers, repeated shovel grabs were taken as close together as possible, with care to obtain representative, undisturbed samples. Observations with respect to texture, colour, particle size, sheen, depth of sediment horizon sampled, and presence of non-sediment materials (e.g., shells, debris, biota) were recorded. Field sheets are included in Attachment 1. Once sufficient sediment volume was collected to fill the laboratory-supplied containers, any remaining sediment was placed back in the creek near where it was collected. Each sample container was labeled with the client, project number, sample date and time, and sample identifier code.

Equipment in contact with the sample was decontaminated before being reused. The shovel was washed with laboratory-grade detergent (e.g., Liquinox®), before being rinsed with deionized water.

For chemistry analysis, sediment samples were stored in airtight, pre-cleaned, wide-mouth glass jars with Teflonlined lids with no headspace. For toxicity testing, sediment samples were stored in 4L plastic pails. Lids were placed on containers securely to prevent leakage. Samples were packed securely in ice-filled coolers kept cool prior to delivery to their respective laboratory: AGAT Laboratories (AGAT) for chemistry analysis or Nautilus Environmental (Nautilus) for toxicity testing.

The elutriate was generated from the worst-case sediment sample from KELSET by Nautilus at WSP's instruction. As part of elutriate generation, WSP staff collected 100L of surface water from KELSET on 8 November 2021 and shipped it to Nautilus. During elutriate generation, subsamples were collected by Nautilus from each dilution, which were submitted to AGAT for analysis of pH, DOC, and total and/or dissolved metals as described in Table 3.

Sample Name	Laboratory Analysis	Notes	
Elutriate Lab Control	pH, DOC, total metals, dissolved metals	Generated using clean laboratory provided water	
Elutriate Site Control	pH, DOC, total metals, dissolved metals	Generated using surface water from ЌELSET	
Elutriate 1.6%	pH, DOC, total metals, dissolved metals	Created using sediment from worst-case	
Elutriate 3.2%	pH, DOC, total metals, dissolved metals	chemistry sample from KELSET. Dilutions made with surface water	
Elutriate 6.5%	pH, DOC, total metals	collected from KELSET.	
Elutriate 12%	pH, DOC, total metals		
Elutriate 25%	pH, DOC, total metals		
Elutriate 50%	pH, DOC, total metals		
Elutriate 100%	pH, DOC, total metals, dissolved metals		

Table 3: Elutriate Sample Summary

Completed Chain-of-Custody forms were submitted with each shipment. Laboratory Certificates of Analysis (COA) reports and corresponding chain-of-custody forms are included in Attachment 2.

3.3 Peeper Deployment

Passive samplers ("peepers" with a plastic housing and membrane cap that contained deionized water) were deployed at seven locations in KELSET. During deployment, the peeper equilibrated with the porewater to permit measurement of in-situ bioavailable metal concentrations without the alteration and oxidation that occurs when a sediment sample is collected for ex-situ porewater exaction. The sampling locations are shown on Figure 3 in the main report.

The peepers, which are known by their proprietary name SPeeper[™], were provided by SiREM, a division of Geosyntec Consultants International Inc. At each location, a metal frame was provided by SiREM which held four

individual SPeeper[™] vials. SiREM also provided a deployment push pole and detailed instructions for the deployment and retrieval of the peepers. At each location, the peeper frame was pushed into the sediment using the deployment pole until the wings at the top of the frame were resting on the bottom of the creek. The frame was weighed down by placing Ziploc bags filled with clean sand on top of each metal wing. The frame was also secured with a nylon rope to a tree on the bank of the creek.

The seven locations were selected based on the available sediment chemistry to capture a range of metals concentrations. At three locations (upper, middle, and lower KELSET), three additional frames were installed on the surface of the sediment in the water column to measure concentrations at the sediment-water interface. These peepers were held in place with weighted bags of sand, were secured to a wooden stake, and secured with a nylon rope to a tree at the bank of the creek.

At the three locations with peepers installed at the sediment-water interface, surface water samples were also collected. During sampling, measurements of pH, temperature, dissolved oxygen, oxidation-reduction potential (redox), and conductivity were recorded on a multi-meter placed in KELSET. Water samples were collected in laboratory-prepared and -supplied containers with appropriate preservatives. Samples were labelled, registered on chain-of-custody forms, stored on ice in coolers and shipped by WSP personnel to AGAT. Samples were analyzed for DOC, dissolved metals, total metals, pH, and hardness. One field duplicate was collected and analyzed for quality control purposes.

During water sampling, nitrile gloves were worn when handling sampling equipment and samples, and the gloves were changed between sample locations.

3.4 Peeper Retrieval and Processing

The peepers, which required a minimum of 28 days of deployment to equilibrate with the surrounding environment, were retrieved on 24 November 2021 and brought back to the WSP warehouse. One peeper was lost during a flooding event (PW21-07), while two peepers were pulled out of the sediment due to high rainfall (PS21-02 and PS21-03). One peeper (PS21-03) was found floating in KELSET, while still anchored to the shoreline, while the other peeper (PS21-02) was sitting on the bank adjacent to KELSET.

The peepers were processed at the WSP warehouse according to the instructions provided by SiREM. Samples were collected from the peeper vials and placed in laboratory-prepared and -supplied containers with appropriate preservatives. Samples were labelled, registered on chain-of-custody forms, stored on ice in coolers, and shipped by WSP personnel to the appropriate laboratories as detailed below.

For the analysis of dissolved metals, pH, hardness, and bromide tracer, samples were shipped to Eurofins Environment Testing America (Eurofins) in Pittsburgh, PA. For the analysis for hexavalent chromium, samples were shipped to AGAT in Burnaby due to the relatively short hold time for hexavalent chromium and amount of time required to ship the samples to Eurofins. The sample results were then forwarded by each laboratory to SiREM, who completed the calculations for freely-dissolved concentrations of dissolved metals in the sediment porewater and sediment-water interface.

3.5 Co-located Soil, Vegetation, and Earthworm Sampling

Co-located soil, vegetation, and earthworm sampling was undertaken at KELSET from 26 to 29 October 2021, with the exception of blackberry sampling, which was conducted on 16 September 2021 due to seasonal availability. The sampling locations are shown on Figure 4 in the main report.

Twenty sampling locations were selected along the length of KELSET, where a 3m by 3m sample plot was identified that would allow for the collection of co-located soil and tissue. A sample sketch was prepared for each location to indicate the location of the co-located soil and tissue samples. Table 4 summarizes the number of soil and tissue samples collected.

Sample Type	Number of Samples	
Soil	20 plus two duplicates	
Blackberry	6 (co-located with soil)	
Blackberry leaves	5 (co-located with soil)	
Alder leaves	7 (co-located with soil)	
Dogwood leaves	11 (co-located with soil)	
Earthworms	5 (co-located with soil and vegetation)	

Table 4: Summary of Co-located Soil, Vegetation, and Earthworm Samples

3.5.1 Soil Sampling

Surface soil samples were collected at depths up to 0.1 mbgs from each sampling location using a shovel. If multiple grab samples were required to fill the laboratory-supplied containers, repeated shovel grabs were taken as close together as possible. Observations with respect to texture, colour, particle size, sheen, and depth of soil horizon sampled were recorded. Field sheets are included in Attachment 1. Once sufficient soil volume was collected to fill the laboratory-supplied containers, any remaining soil was placed back in the ground where it was collected. Each sample container was labeled with the client, project number, sample date and time, and sample identifier code.

Equipment in contact with the sample was decontaminated before being reused. The shovel was washed with laboratory-grade detergent (e.g., Liquinox®), before being rinsed with deionized water.

Soil samples were stored in airtight, pre-cleaned, wide-mouth glass jars with Teflon-lined lids with no headspace. Lids were placed on containers securely to prevent leakage. Samples were packed securely in ice-filled coolers kept cool prior to delivery to AGAT for analysis. Completed WSP Chain-of-Custody forms were submitted with each shipment. Laboratory COA reports and corresponding chain-of-custody forms are included in Attachment 2.

3.5.2 Blackberry Sampling

Blackberry samples were collected on 16 September 2021, while blackberries were still in season and available for sampling. Blackberries were picked from blackberry bushes located within 10 metres of the creek, targeting at least 20 grams of berries from each bush. The samples were gently rinsed with deionized water, placed in a clean Ziploc bag, and frozen. Each Ziploc bag was labeled with the client, project number, sample date and time, and

sample identifier code. The samples were kept frozen at the WSP warehouse for potential future analysis if required. Each blackberry bush was flagged and identified with GPS coordinates, to facilitate future co-located soil sampling during the October 2021 field program.

3.5.3 Earthworm Sampling

Five earthworm samples were collected, co-located with soil samples. Earthworms were sampled by using a shovel to loosen the top 10 - 15 cm of an area of soil. A trowel and hands (wearing nitrile gloves) were used to sift through the soil and collect earthworms, targeting at least 20 grams of earthworms per sample. The earthworms were then placed in laboratory jars with a moistened Kimwipe and holes drilled in the lid for ventilation.

The earthworms were left to depurate for 24 hours in their jars in a cool and dry location at the WSP warehouse. Once depurated, the worms were gently rinsed in deionized water, placed in a clean Ziploc bag, and frozen. Each Ziploc bag was labeled with the client, project number, sample date and time, and sample identifier code. The samples were kept frozen at the WSP warehouse for potential future analysis if required.

3.5.4 Vegetation Sampling

Vegetation samples were collected, co-located with soil samples. A total of 23 leaf samples were collected across the 20 soil sampling locations, targeting 20 grams of one species per sample. Vegetation species were selected based on the likelihood that they would be consumed by insects and animals near KELSET. Three types of leaves were selected for sampling, based on proximity to KELSET and availability: Red alder (*Alnus rubra*) leaves, Red osier dogwood (*Cornus sericea*) leaves, and Himalayan blackberry (*Rubus armeniacus*) leaves.

Healthy leaves were selected and cut with scissors and placed in a labelled Ziploc bag. At the WSP warehouse, leaves were gently rinsed with deionized water, patted dry, and placed in a clean Ziploc bag. Each Ziploc bag was labeled with the client, project number, sample date and time, and sample identifier code. The samples were kept frozen at the WSP warehouse for potential future analysis if required.

3.6 Opportunistic Aquatic Invertebrate Sampling

During peeper retrieval on 24 November 2021, opportunistic aquatic invertebrate sampling was attempted. At each location where peepers were retrieved, a WSP biologist spent 15 minutes wading the creek and searching for aquatic invertebrates that could be sampled. If observed, the aquatic invertebrates were collected by hand (with nitrile gloves) and placed in a Ziploc bag. Each Ziploc bag was labeled with the client, project number, sample date and time, and sample identifier code.

During opportunistic sampling, only two fly larvae were observed. Due to the small tissue volume (insufficient for laboratory analysis), the samples were not frozen and were discarded.

3.7 Quality Assurance and Quality Control

A WSP quality assurance/quality control (QA/QC) program was followed to produce interpretable, meaningful, and reproducible sampling and analytical data. Standard industry field procedures were used during the field investigation to help achieve reproducibility. This involved using QA/QC measures in both the collection and analysis of samples.

Quality Assurance—Field Investigation

The QA measures used in the collection, preservation, and shipment of samples included the following management controls:

- Sampling methods were consistent with established WSP protocols, industry standards, and provincial and/or federal requirements.
- Samples were collected and processed by qualified personnel and were collected in such a way to minimize the introduction of foreign material into the sample and minimize loss of material.
- Field notes were recorded during the investigation. Detailed field records documenting the methods and circumstances of collection for field samples were prepared at the time of sample collection. Samples were assigned a unique sample identification number recorded in the field notes, along with the date and time of sample collection, the sample matrix, and the requested analyses. The geographic locations of samples collected were recorded to allow for revisiting of the sample location if needed.
- Dedicated sampling equipment and clean disposable Nitrile[™] gloves were used at sampling locations to avoid cross-contamination. Non-dedicated sampling equipment (e.g., shovel) was decontaminated between sampling locations using a laboratory-grade detergent (e.g., phosphate-free Liquinox) and thoroughly rinsing with deionized water.
- Chain-of-Custody procedures were used for the shipment of samples to the laboratories; samples included in a shipment were identified on a WSP chain-of-custody form, with one copy retained by WSP personnel after sign-off.
- Samples were stored in coolers and chilled with ice during transport and prior to submission to the analytical laboratory(ies).

Quality Control—Field Investigation

The QC measures established for the field program included the following technical aspects:

- Submission of field duplicate samples (i.e., paired sample analyses). A field duplicate sample is a second sample from the same location that is submitted to the analytical laboratory under a separate label. For sediment and soil samples, duplicates were collected by placing sediment/soil from the same sample location directly into the sample jars; thus, the sample and duplicate were not mixed together. For surface water, water was poured from the collection bottle into sample bottles, alternating between the bottle sets for the sample and the duplicate. The duplicate target is 10% duplicates for samples analyzed.
- Sufficient sample volumes were collected so that target detection limits could be met, and quality control samples could be analyzed.

 Samples were packaged and shipped to the laboratory by appropriate means, so that holding times and storage conditions for the analyses were met.

Quality Control—Data Interpretation

The QC measures established for interpretation of the chemistry results included the following technical aspects:

- Standard WSP data quality checks were completed to verify that electronic and manual data transfers (e.g., compilation of data into tables) were complete and that the potential for errors was minimized.
- The relative percent difference (RPD) between paired sample results was used to assess duplicate sample data. The RPD is a measure of the variability between two outcomes from the same procedure or process and is calculated by:

$$RPD(\%) = \left| \frac{(x_1 - x_2)}{average(x_1, x_2)} \right| \times 100$$

where x_1 is the original sample result and x_2 is the paired analysis result.

Where the concentration of a given parameter is less than five times the laboratory reporting limit (LRL), the laboratory results are considered to be less precise and the RPD is not calculated. For parameters with concentrations less than five times the LRL, the difference factor (DF) between paired analyses results is calculated by:

$$DF = \frac{(x_1 - x_2)}{LDL}$$

where x_1 is the original sample result and x_2 is the paired analysis result.

In 2020, the BC Ministry of Environment updated the British Columbia Laboratory Manual (BC ENV 2020) which contains recommended Data Quality Objectives (DQOs) for laboratories duplicate RPDs. It is recognized that these DQOs are intended for laboratory duplicates and do not include provisions for additional variability in field duplicates. However, these DQOs are considered a conservative screen for assessing the quality of field duplicates. In sediment and soil, the DQOs applied to this investigation are an RPD of less than 40% for high-variability metals (Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, Ti), an RPD of less than 30% for other metals and inorganics, and a difference factor less than two. In water, the DQOs applied to this investigation are an RPD of less than 20% for inorganics and metals, and a difference factor less than two. Where the DQO was exceeded, further examination was conducted.

Quality Assurance—Laboratory Program

AGAT was contracted by PSPC to analyze the sediment, soil, and surface water samples collected as part of the investigation. SiREM was contracted by WSP to report the results from the Peepers, but the chemical analysis was subcontracted to Eurofins TestAmerica (Eurofins) by SiREM. Toxicity testing was completed by Nautilus Environmental (Nautilus), contracted by WSP. Both AGAT and Nautilus are accredited by CALA for the analyses they conducted. Eurofins is not accredited by CALA, as they are located in Pittsburgh, outside of the Canadian jurisdiction.

The analytical laboratories incorporated and reported the results of internal checks to WSP. These consisted of analysis of laboratory replicates, method blanks, and reference samples (a certified reference standard, matrix spike or control standard), as applicable. These were used to assess the reliability, accuracy, and reproducibility of the data. Reports from the laboratory were reviewed internally prior to submission to WSP. If internal QA/QC problems were encountered, the field samples and internal QA/QC samples were re-analyzed. Data quality issues identified by the laboratory were communicated to WSP at the time of data delivery.

Laboratory data were reviewed upon receipt to verify that specified data quality objectives were met. Potential inconsistences were noted and addressed with the laboratory facilities to confirm results.

Copies of the analytical reports and the corresponding Chain-of-Custody forms are presented in Attachment 2 for AGAT and SiREM, and in Attachment 3 for Nautilus.

4.0 CHEMICAL ANALYSIS

4.1 Chemical Results

Tabulated results for the samples collected by WSP are provided in Appendix B of the main report as follows:

- Table B-1: Sediment Chemistry
- Table B-2: Surface Water Chemistry
- Table B-3: Porewater Chemistry
- Table B-4: Elutriate Chemistry
- Table B-5: Soil Chemistry

The laboratory COA, along with the chain-of-custody forms, are provided in Attachment 2. The data collected by WSP were integrated with the applicable data used to conduct the HHERA (described in the main report) and presented in the tables in Appendix B. The results of the screening against applicable criteria and the implications for risk management for KELSET Creek are discussed in the main body of the report.

4.2 QA/QC Results

Standard WSP field procedures were used throughout the investigation. Chain-of-custody procedures were followed during sampling events. Samples were submitted to the laboratory under chain-of-custody protocols using forms that did not identify the expected concentrations. The samples were stored in coolers prior to submission to the analytical laboratory, and appropriately completed chain-of-custody forms accompanied the submissions. Samples were received at the laboratory at acceptable temperatures and analyzed within the recommended holding times.

4.2.1 Laboratory

Analytical laboratory reports from AGAT and SiREM are provided in Attachment 2.

AGAT Laboratories

AGAT considered their data to be reliable. The following quality control notes were made in their analytical reports:

- Sediment Samples: AGAT was unable to perform hexavalent chromium analysis due to color interference on two samples.
- Soil: AGAT was unable to perform hexavalent chromium analysis due to color interference on all samples.
- Surface water: Some concentrations of total metals (arsenic, barium, boron, potassium, sodium, strontium, and sulphur) were less than the corresponding dissolved metals concentrations. AGAT noted that results were within the precision of each method. In addition, the analysis of pH was conducted outside the holding time. The field-measured pH was used instead.
- Elutriate: The method blank spike for total aluminum was low (70%, outside the target range of 80% 120%). AGAT noted that "with multi element scans it is acceptable for a maximum of 10% of each QC criteria to fail to an absolute maximum of 10%". Since only one method blank spike fell outside the QC criteria range by 10%, these results are considered acceptable.

In general, laboratory quality control measures were within acceptance criteria including surrogate recoveries, method blank concentrations, laboratory duplicate RPDs, matrix spike recoveries and blank spike recoveries. Analyses complied with the analysis holding time requirements (with the exception of pH noted above) and were received in acceptable condition.

SiREM

SiREM considered their data to be reliable. The following quality control notes were made in their analytical report:

- Samples arrived at the laboratory slightly outside the acceptable temperature range. However, it was noted in the laboratory analytical report that metals analysis does not require thermal preservation.
- pH had exceeded its hold time when analyzed.
- Tin was elevated in the laboratory method blank.
- Several samples were diluted due to the conductivity of the sample matrix.
- There were no published values for the diffusion coefficient for tin, so concentrations were not calculated by SiREM.

In general, laboratory quality control measures were within acceptance criteria, with the exceptions noted above. Analyses complied with the analysis holding time requirements (with the exception of pH noted above).

4.2.2 Field

The results of the sediment, soil, and surface water duplicate pair analyses are presented in Tables B-6, B-7, and B-8 in Appendix B of the main report. Duplicate samples were analyzed for the same parameters as the parent samples. The target duplicate frequency of 10% was met for this investigation. RPD exceedances of the DQOs for the duplicate pairs were:

- Sediment:
 - SED21-31: Total Carbon (RPD = 39%), antimony (RPD = 182%), arsenic (RPD = 89%), lead (RPD = 96%), manganese (RPD = 50%), phosphorus (RPD = 37%), and zinc (RPD = 55%)
 - SED21-BG-01: Arsenic (RPD = 111%) and Lead (RPD = 48%)
- Soil:
 - CS21-16: pH (RPD = 40%)
- Surface Water:
 - SW21-03: Dissolved antimony (DF = 2.5) and total arsenic (DF = 3)

WSP concludes that these RPDs are not indicative of an overall quality control issue. For all of the duplicate pairs in soil and surface water, results were below the applicable standard/guideline, and so this heterogeneity will not affect the interpretation of the results. In sediment, there was one duplicate pair (SED21-31) where one sample in the pair was above the applicable standard while the other was not (for arsenic). In this case, WSP conservatively assumed that the location was represented by the higher concentration. In general, sediment samples are more heterogenous than soil, and therefore, minor difference in the fine-grained fraction between two samples can lead to differences in the contaminant concentrations that are bound to that fraction.

The laboratory QA/QC programs were also reviewed. The samples met the lab's data quality objectives for laboratory control samples, method blanks, duplicate pairs, and recommended hold times, with any exceptions noted in Section 4.2.1 above. The results of the internal laboratory QA testing are provided in the laboratory reports included in Attachment 2. WSP reviewed the laboratory quality control duplicates and found that the results of the analyses met the objectives of the QA/QC program. The review of the laboratory QA/QC analyses suggests the laboratory data is generally accurate and reproducible and can be relied upon for the purposes of this environmental investigation.

Overall, WSP concludes that the chemistry data is representative of site conditions and suitable for use for both site characterization and risk assessment purposes.

5.0 TOXICITY TESTING

The collection of samples for toxicity testing was described in Section 3.0. The following sections describe the methods and results for the toxicity testing conducted as part of the SSI.

5.1 Methods

Sediment toxicity testing was performed at the Nautilus Environmental Laboratory (Burnaby, BC) using the 10-d *Chironomus dilutus* survival and growth toxicity test according to procedures described by Environment Canada (1997, EPS 1/RM/32) and the 7-d *Pimephales promelas* survival and biomass toxicity test (Environment Canada 2011, EPS 1/RM/22). For more detailed information regarding specific test conditions and methodology, please refer to the laboratory reports provided in Attachment 3. Toxicity testing was conducted as follows:

- The first round of toxicity testing was initiated on November 19, 2021 and involved 10-d Chironomus dilutus (C. dilutus) survival and growth sediment toxicity tests and 7-d fathead minnow (Pimephales promelas) elutriate survival and biomass toxicity tests.
- Due to the large number of samples, the *C. dilutus* tests were conducted on two separate dates, November 19, 2021 and November 26, 2021. Each batch of *C. dilutus* test was conducted with a control sediment and reference site (identified by Nautilus as 06188-04).
- The fathead minnow elutriate test also included a control sample, as well as a site control.

5.1.1 Fathead Minnow Elutriate Preparation

The elutriate sample was prepared at the Nautilus Environmental laboratory in Burnaby, BC using the procedure described by the United States Environmental Protection Agency (1998). Briefly, the sediment sample (06188-01) and water sample (5399-01) were acclimated to room temperature overnight. Both samples were homogenized before use. The sediment sample was hand-stirred for 5 minutes, large, woody debris was removed, and the water sample was shaken. The sediment and water were then combined in a sediment-to-water ratio of 1:4 on a volume basis. This mixture was stirred vigorously for 30 minutes via magnetic stirrer. Every 10 minutes the mixture was also stirred manually to ensure complete mixing. After the 30-minute mixing period, the mixture was left to settle for one hour. The supernatant was then removed using a siphon, yielding the elutriate sample. The elutriate was centrifuged at approximately 2,000 rpm for 30 minutes to remove any remaining particulates. The centrifugation was repeated once more to further clarify the elutriate. Prepared elutriate was stored in the dark at $4 + 2^{\circ}$ C until required for testing.

5.2 Results

Results of the 10-d *C. dilutus* and 7-d *Pimephales promelas* toxicity tests are provided in Tables 5 through 7. Pairwise statistical comparisons (p < 0.05) were made by the analytical laboratory and the results of those statistical comparisons to the negative control and background reference sediments (collected from TENTEN) are shown on the tables. The detailed HHERA relied on additional decision criteria (i.e., an adverse effect in the risk assessment is defined by greater than a 20% reduction, not just a statistical difference) which are discussed in the main report.

Overall, the samples did not demonstrate a statistically significant (or greater than 20%) reduction relative to the negative controls or background samples. The implications of these results are discussed in greater detail in the main report.
Table 5:	Chironomus	dilutus	Survival and	l Growth	Toxicity	Test	Results	(19 No	vember	2021)
	onnonius	anatas	our vivar and		IONIOILY	1000	Results			

	Mean ± SD					
Sample ID	Survival (%)	Dry Weight (mg/organism)				
Control Sediment	100 ± 0.0	1.88 ± 0.09				
06188-04 (Reference Sediment)	84.0 ± 11.4ª	2.76 ± 0.37				
06186-01	96.0 ± 5.5	2.66 ± 0.46				
06186-02	94.0 ± 8.9	2.80 ± 0.57				
06186-03	92.0 ± 13.0	2.69 ± 0.61				
06186-04	94.0 ± 5.5	2.45 ± 0.64				
06186-05	98.0 ± 4.5	2.28 ± 0.12				
06186-06	100.0 ± 0.0	2.52 ± 0.29				
06186-07	92.0 ± 8.4	2.71 ± 0.23				
06186-08	98.0 ± 4.5	2.52 ± 0.25				

Notes:

SD = Standard Deviation; mg = milligrams.

^a Indicates a statistically significant effect relative to the control sediment.

Table 6: Chironomus dilutus Survival and Growth Toxicity Test Results (26 November 2021)

Comple ID	Mean ± SD					
Sample ID	Survival (%)	Dry Weight (mg/organism)				
Control Sediment	98.0 ± 4.5	1.94 ± 0.22				
06188-04 (Reference Sediment)	94.0 ± 8.9	2.08 ± 0.37				
06186-09	94.0 ± 5.5	1.98 ± 0.21				
06186-10	94.0 ± 8.9	2.34 ± 0.36				
06186-11	88.0 ± 4.5	2.21 ± 0.57				
06186-12	100.0 ± 0.0	2.43 ± 0.20				
06188-01	96.0 ± 8.9	2.51 ± 0.33				
06188-02	94.0 ± 8.9	2.51 ± 0.29				
06188-03	100.0 ± 0.0	2.61 ± 0.44				

Notes:

SD = Standard Deviation; mg = milligrams.

		-				
$\mathbf{Concentration} \left(0 \right) \left(\mathbf{y} \right)$	Mean ± SD					
	Survival (%)	Biomass (mg/organism)				
Laboratory Control	100.0 ± 0.0	0.22 ± 0.01				
Site Control	100.0 ± 0.0	0.54 ± 0.03				
1.56	100.0 ± 0.0	0.50 ± 0.02				
3.12	100.0 ± 0.0	0.50 ± 0.05				
6.25	90.0 ± 10.0	0.45 ± 0.05				
12.5	100.0 ± 0.0	0.50 ± 0.08				
25	100.0 ± 0.0	0.56 ± 0.11				
50	96.7 ± 5.8	0.47 ± 0.04				
100	96.7 ± 5.8	0.48 ± 0.02				
	Test Endpoint (% v/v)					
LC50	>100					
IC50		>100				

Table 7: Fathead Minnow Survival and Biomass Toxicity Test Results (19 November 2021)

Notes:

IC = Inhibition Concentration; LC = Lethal Concentration; SD = Standard Deviation; mg = milligrams.

5.3 Quality Assurance/Quality Control

The health history of the test organisms used in the exposures was acceptable and met the requirements of the Environment Canada protocols (Environment Canada 1997, 2011). The tests met all control acceptability criteria and water quality parameters remained within ranges specified in the protocol throughout the tests. There were no deviations from the test methodology, with the exception of not feeding the fathead minnow test organisms on day zero of testing. Uncertainty associated with this test is best described by the standard deviations around the mean. Results of the reference toxicant tests conducted during the testing program are summarized in Table 8. Results for these tests fell within the acceptable range for organism performance of mean and two standard deviations, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in the tests was appropriate.

Table 8: Results of	the Reference	e Toxicant Test	s Performed During the 2	021 Toxic	ity Testing Program
	Eurolus e lus 4	E a da a bat	Historical Moan		

Species	Endpoint (Survival)	Endpoint (Biomass)	Historical Mean (2 SD Range)	CV (%)	Test Date
Chironomus dilutus	6.6 g/L KCI	-	5.4 (3.8 – 7.6) g/L KCI	17	November 19, 2021
Chironomus dilutus	6.2 g/L KCI	-	5.4 (3.8 – 7.6) g/L KCl	17	November 21, 2021
Pimephales promelas	8.5 g/L NaCl	3.0 g/L NaCl	5.8 (3.8 – 8.9) Survival 3.4 (2.2 – 5.3) Biomass	14.3	November 19, 2021

Notes:

SD = Standard Deviation, CV = Coefficient of Variation

6.0 **REFERENCES**

- BC ENV. 2020. British Columbia Environmental Laboratory Manual. Analysis, Reporting & Knowledge Services, Knowledge Management Branch, Ministry of Environment and Climate Change Strategy; [accessed 15 December 2021]. https://www2.gov.bc.ca/gov/content/environment/research-monitoringreporting/monitoring/laboratory-standards-quality-assurance/bc-environmental-laboratory-manual
- Environment Canada. 1997. Biological test method: test for survival and growth in sediment using the larvae of freshwater midges (*Chironomus tentans* and *Chironomus riparius*). Environmental Protection Series EPS 1/RM/32. December 1997. Environment Canada, Method Development and Application Section, Environmental Technology Centre, Ottawa, ON. 131 pp.
- Environment Canada. 2011. Biological test method: test of larval growth and survival using fathead minnows. EPS 1/RM/22, Second Edition, March 2011.
- Golder 2021a. Data Review and Gap Analysis, and High Level Sampling Analysis Plan for KELSET (Reay) Creek, Sidney, BC. Dated 25 March 2021. Internal Reference No. 21455123-001-L-Rev0.
- Golder 2021b. Supplemental Sediment Sampling in Support of Risk Management at KELSET (Reay Creek) in Victoria, BC. Dated 13 December 2021. Internal Reference No. 21455123-055-L-Rev0.
- SLR Consulting (Canada) Ltd. (SLR). 2018. Reay Creek Downstream Sediment and Surface Water Assessment. Reay Creek, Sidney and North Saanich, BC. Report prepared for Public Services and Procurement Canada. January 2018. SLR Project No: 205.03892.00000.
- US EPA/US ACE. 1998. Evaluation of dredged material proposed for discharge in waters of the U.S.- testing manual. Standard elutriate preparation. EPA-823-B-98-004, February 1998.

ATTACHMENT 1

Field Sampling Sheets

KELSET Creek Project Nam Project # 21455123 ITTM Zone Collected By Sean Sutherland / Gordon Ph Verified By FDA/FD Description Depth (m bgs) Coordinates SCN Analyses Date / Time Location Description 3 samples -- 1 DUPLICATE for chemistry only (not toxicity) **TENTEN Creek Background Locations** (ML) SILT, trace fand and arget 0 - 0.1m 06189-02 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, gravel. 22/10/21 pstream of West Saanich Road тос 06188-05 SED21-B6-02 4L pail: Toxicity Analysis 11:00 Target 0 - 0.1m (ML) CLAYEY FILT, frace ground 06189-04 bags and 2 jars: Metals, speciated 22/10/21 chromium, Grain size and hydrometer, TENTEN-B midgle of the reach TOC 06188-06 12:00 4L pail: Toxicity Analysis (SW) gravelley SAND, Fic, grey 06189-010 Target 0-0.1m FD/ FDA 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, 22/10/24 TENTEN-C TOC downstream of Willingdon Road 06188-01 09:00 4L pail: Toxicity Analysis SED21-B6-01 Submit TENTEN chemistry samples (2 jars 2 bags) to Agat lab for analysis on 72-hour rush. Submit toxicity samples to Nautilus Environmental 10 samples -- 1 DUPLICATE for chemistry only (not toxicity) **KELSET Creek Sediment Locations - TOP 10 PRIORITY LOCATIONS** COMP: collected within Instan pirture of F-M gravel Some Silt arget 0 - 0.1m 6185-01 2 bags and 2 jars: Metals, speciated 20/10/21 SED21-28 chromium, Grain size and hydrometer, 09:45 06186-01 4L pail: Toxicity Analysis SED21-A SW21-0 Note YSI water quality parameters in field notebook 06183-01 25/10/21 Surface water sample CHERON C Peeper install: one in sediment and 25/10/21 By21-01 ne in water column (GP/SP) 62 Aved and SAND Target 0 - 0.1m 06185-03 2 bags and 2 jars: Metals, speciated 20/10/21 SEDZI-30 chromium, Grain size and hydrometer frace Silt, frey TOC 06188-03 SED21-B 4L pail: Toxicity Analysis 10:50 (near former SED21-22 Peeper install: one in sediment 25/10/21 PSZ1-07 FOR JAME as 21-30. FD XND Stain Fize Pute & (x2) Silly 06185-04/05 SED21-C SED22-31 2 bags and 2 jars: Metals, speciated 20/10/21 chromium, Grain size and hydrometer, (near former RC17-12 06186-04 4L pail: Toxicity Analysis (GP-SP) CRAVER (Fre) and SAM D. 11:45 Target 0 - 0.1m 06185-06 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer 20/10/21 F-c), Wood oganics SED21-D SEP21-32 06186-05 4L pail: Toxicity Analysis Note YSI water quality parameters in field notebook FPA. 25/10/21 06183-02/02 (near former RC17-11) 25/10/21. Buz1-03 Silt upstream/downsirean. 10t's of H2D in Janples. SED21-33 arget 0 - 0.1m 06185-07 2 bags and 2 jars: Metals, speciated 20/00/21 chromium, Grain size and hydrometer 06186-06 13:00 4L pail: Toxicity Analysis near former RC17-10 FDAI (SP) Statienter SAND, some Silt 25/10/21-Peeper install: one in sediment PS21-04 06186-08/09 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, JED21-34 20/10/21 TOC 06186-07 4L pail: Toxicity Analysis 14:30 (near former SED21-16) > Coloration lighter (1990)

oject Name	KELSET Creek		and Alaka	1	Constant and the second s
oject#	21455123	and the second		GPS	MARTINE CONTRACTOR STREET
llected By	Sean Sutherland / Gordon Phillippe	and a second and a s		Page	of
ate / Time	Location Description	Analyses	SCN	Depth (m bgs) Coordinates FI	A/FD Description
25110/21	PS21-05	Peeper install: one in sediment		And the second se	1964 3 HE (180) 34 AF 19 142 1/
20/10/21	SED21-G SEP21-35 Somewhere in reach between RC17-07 and SED21-12	<u>2 bags and 2 jars</u> : Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06185-10 0618 6 -08	Target 0 - 0.1m	(SM) SILTYSAND, grey.
21/10/21	SED21-H	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06187-03	Target 0 - 0.1m	(SP) SAND, Fine, for fit. Vegetation debis, lightbour
26110121	SED21-39.	Peeper install: one in sediment			(to) monor of leveres
21/10/21	SED21-1 SED21-42 (near former RC17-02)	<u>2 bags and 2 jars</u> : Metals, speciated chromium, Grain size and hydrometer, TOC <u>4L pail</u> : Toxicity Analysis	06187-06 06188-03	Target 0 - 0.1m	(m) SUT with Vegetation organics/wood debris
21/10/21	SEDZI-40	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06187-04	Target 0 - 0.1m	(mc) SICT w/ vegetation organic wood clebris
26/10/21	SED21-J (near former SED21-05)	Surface water sample	06183-04		Note YSI water quality parameters in field notebook
26100121	PW21-07 ->	Peeper install: one in sediment and one in water column			a puip up and for the later only (not to visite)
-se references and a second	KELSET Creek Sediment Locations - No	ext 5 lower priority locations		Tomet 0 - 0.1m	5 samples 1 DUPLICATE for chemistry only (not excerting)
20/10/21	SED21-K (near former SED21-24)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06185-02		Coppand of trace diff
21/10/21	SED21-L SED21-37 (near former RC17-13)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06187-01	Target 0 - 0.1m	(Gw) Sandy ORAVEL, E.C. Sand, F-c. gravel, trace silt, grey.
10:15.	SED21-M SED21-38 (near former RC17-09)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06187-02 06188-11	Target 0 - 0.1m	(6W) Sandy GRAVEL, F-c growd. M-c fand, #trace gilt, grey. Underlyins CLAY unit Demony
20/10/21	SED21-N SED21-36 (near former RC17-07)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06185-11 061 86 -09	Target 0 - 0.1m /	(SM) SILTY SPND, trace grower, lisht grey.
21/10/21	SED21-0 Sep 21 - 41 Somewhere in reach between RC17-07 and SED21-12	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 4L pail: Toxicity Analysis	06187-05	Target 0 - 0.1m	(3m) SILTY SANP, Lots OF woody debris and Organic

Project Name	KELSET Creek			000			and the second
Project #	21455123	la la la companya de		GPS UTM Zone	C. A. Company		
Collected By	Sean Sutherland / Gordon Phillippe		1+10-min	Page	and the second stands		of
Verified By	Location Description	Analyses	SCN	Depth (m bgs)	Coordinates	FDA/FD	Description
Date / Time	KELSET Creek Co-Located Soil/Tissue	Locations		7	West of anot bank?		20 samples 2 DUPLICATES for soil, ideally also for tissue
26110/21	(521-01-	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-01	Target 0 - 0.1m	West		REFER TO FLELDNOTES
13:00	0821.01				West or east bank?		Please include sketch relative to creek and soil sample
261.012	(At flagged blackberry bush) SI21-XX for earthworms GR21-XX for grass	Earthworm sample: 20 grams of earthworms in glass jars with moistened Kimwipe and holes in lid	Contract the		WEST		
(3.00	LE21-XX for leaves	one service pat			West or east bank?		Please include sketch relative to creek and soil sample
26100121	LEZI-OI	Vegetation sample: 20 grams of one species in a ziploc bag			WEST		
	(Briterssig)		and the second second	Target 0 - 0.1m	West or east bank?		
26/10/24	CS21-02 CS21-02- (near SED21-24)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-02	1	EAST		
19.30	SI21-XX for earthworms	The second s	001-10-10-		West or east bank?		Please include sketch relative to creek and soil sample
26/10/21	GR21-XX for grass LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		EAST		
26(10121	CS21-03 CS21-03 (near RC17-15)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer TOC	06190-03	Target 0 - 0.1m	EAST		and the second
10.00	SI21-XX for earthworms	in the second			West or east bank?	C - Nor	Please include sketch relative to creek and soil sample
26100121	GR21-XX for grass LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag			EAST		
15:00	(Aider)	Providence of the second se		Target 0 - 0.1m	West or east bank?		
26100121	CS21-04 (near RC17-14) CS21-04	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer TOC	06190-04	-	WEST		
1)(-	SI21-XX for earthworms		Contraction of the second	1	West or east bank?		Please include sketch relative to creek and soil sample
26/1012	GR21-XX for grass LE21-XX for leaves LE21-04	Vegetation sample: 20 grams of one species in a ziploc bag	-		WEST		and the second second second
	(Pogwood)	OOL Some Set	Target 0 - 0.1m	West or east bank?		
27/10/21	CS21-05 CSZ1-05 (near RC17-13)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer TOC	06190-0510	6	WEST	FDA	1
01-15	SI21 XX for earthworms	Tallan and State		Sales and the sales	West or east bank?	1-	Please include sketch relative to creek and soil sample
27/10/21	GR21-XX for grass LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		WEST		
09:15	[Alder]		· · · ·	Target 0 - 0.1m	West or east bank?		
27100121	CS21-06 (near RC17-12) CS21-0b	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer TOC	06190-07		WEST		
01-50	SI21 XX for earthworms		-		West or east bank?		Please include sketch relative to creek and soil sample
1510175	GR21-XX for leaves LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		WEST		

, (

Project Name	KELSET Creek	h.	and and	GPS			
Collected By	Sean Sutherland / Gordon Phillippe		UTM Zone	and the second			
Verifjed By				Page	Margaret and and and		ło
Date / Time	Location Description	Analyses	SCN	Depth (m bgs)	Coordinates	FDA/FD	Description
29100121	CS21-07 CS21-07 New location - halfway between RC17-12 and RC17-11	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06191-06	Target 0 - 0. Im	South West of east Daliky		
29110121.	SI21-XX for earthworms GR21-XX for grass LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		West or east bank?		Please include sketch relative to creek and soil sample
27/10/21	C321-08	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-09	Target 0 - 0.1m	West or east bank?	50%	
27100121	(At flagged blackberry sample) SI21-XX for earthworms GR21-XX for grass LF21-XX for leaves	SI21-XX Earthworm sample: 20 grams of earthworms in glass jars with moistened Kimwipe and holes in lid	array Second Second		West or east bank?		Please include sketch relative to creek and soil sample
27(10/21.	LEZI-08 (Blackberg)	Vegetation sample: 20 grams of one species in a ziploc bag	0012-00		West or east bank?		Please include sketch relative to creek and soil sample
2710121	CS21-09 CSZ1-09. (near RC17-10)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-08	Target 0 - 0.1m	West or east bank?	Lastric	
2716/21	SI21-XX for earthworms GR21-XX for grass LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		West or east bank?		Please include sketch relative to creek and soil sample
27/10121	CSZ1-10	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-10	Target 0 - 0.1m	West or east bank?		
2716121	(At flagged blackberry sample) SI21-XX for earthworms - D GR21-XX for grass	SI21-XX Earthworm sample: 20 grams of earthworms in glass jars with moistened Kimwipe and holes in lid	2016-05		West or east bank?		Please include sketch relative to creek and soil sample
27/10/21	LEZI-10 (Blackberry)	Vegetation sample: 20 grams of one species in a ziploc bag			West or east bank?		Please include sketch relative to creek and soil sample
27160121	C321-11	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06190-11	Target 0 - 0.1m	West or east bank?		
20100000	(At flagged blackberry sample) SI21-XX for earthworms NOR GR21-XX for grass LF21-XX for grass LOOT	SI21-XX Earthworm sample: 20 grams of earthworms in glass jars with moistened Kimwipe and holes in lid	090 - or.		West or east bank?		Prease include sketch relative to creek and soil sample
27/10/21	LEZI-II	Vegetation sample: 20 grams of one species in a ziploc bag	-		West or east bank?		Please include sketch relative to creek and soil sample

Nysist Nums NULSET Creak Unstand Nysist Nums 148173 118173 Target 3 Target 0 - 0.1m Same Number of Code NHBBB Number of Code NHBBB Variat 30 Number of Code NHBBB Number of Code NHBBB Number of Code NHBBB 271 LOIZI CS21-12 Code of Time Code of Code of NHBB Code of Code of NHBB Nest or cast bank? Please includ 271 LOIZI CS21-12 Code of NHBB Size X for Game NHBMB Size X for Game Size and Nydrometer, TOC O6190 - 1Z West or cast bank? Please includ 271 LOIZI Size X for Game NHBMB Size X for Game Size and Nydrometer, TOC O6190 - 1Z West or cast bank? Please includ 271 LOIZI Size X for Game	
are $\frac{216532}{2}$ are $\frac{216532}{2}$ Date 1 Time Location Description Analyses SCN Depth (m bgs) Coordinates FDA/FD Description Zate 10 CSCN Depth (m bgs) Coordinates FDA/FD Description Zate 10 CS21-12 Coordinates FDA/FD Description CS21-12 Coordinates FDA/FD Description CS21-12 Coordinates FDA/FD Description CS21-12 CS21-12 CS21-12 Size Archivemes angle: 20 grams of one graps of one graps of one graps cises in a ziploc bag CS21-13 CS21-13 <t< th=""><th></th></t<>	
James Label of Total Park Jumpson Jumpson Jointed By Seen Submitted (Josten Palage Park Jointed Ty Location Description Analyses SCN Depth (m bgs) Coordinates FDA/FD Description Z271(01Z1 CS21-12 Character Stress Zagas and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ToC O6190-17 Target 0-0.1m West or east bank? Please includ Z21(101Z1 CS21-12 Character Stress SI21-XX tearthwoms in glass jars with moistened Kimwipe and holes in lid O6190-17 West or east bank? Please includ Z21(101Z1 LE21-XX for leaves SI21-XX tearthwoms in glass jars with moistened Kimwipe and holes in lid FAST Please includ Z71(101Z1 LE21-12 Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one species in a zploc bag Vegetation sample: 20 grams of one sprece in zploc bag	
Jointed by Joint and your control of the part of t	of
Date / Time Location Description Analysis Dot Date	n
Z71101Z1 CS21-1Z 2bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, OG190-1Z ZENST Please includ Z7101Z1 (Af Ragged Machberry sample) siz1-xX for east bank? Siz1-xX for east bank? Please includ Please includ Z7101Z1 (Af Ragged Machberry sample) siz1-xX for east bank? Siz1-xX for east bank? Please includ EAST Please includ Z7101Z1 LEZ1-XX for leaves Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ Z7101Z1 CS21-13 CS21-13 CS21-13 Z bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ITS: Z S OG191-05 Target 0-0.1m West or east bank? Please includ Z7101Z1 CS21-13 CS21-13 CS21-13 CS21-13 Please includ CS21-14 Please includ Z7101Z1 CS21-13 CS21-13 CS21-14 CS21-17 Please includ CS191-05 West or east bank? Please includ Z7102121 Siz1-xX for grams CS21-17 Z bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC OG191-05 West or east bank? Please includ Z81/W1Z1 CS21-14 CS21-17 Sbags and 2 jars: Me	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	le sketch relative to creek and soil sample
LE21-XX for leaves Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ 27/10171 LE21-17 Vegetation sample: 20 grams of one species in a ziploc bag Target 0 - 0.1m West or east bank? Please includ 27/10171 CS21-13 CS21-13 CS21-13 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC OG191-OS Target 0 - 0.1m West or east bank? Please includ 31:755 SI21-XX for grass LE21-XS for grass Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ 13:755 LE21-XX for grass LE21-13 Seguard 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC OG191-OS Target 0 - 0.1m West or east bank? Please includ 281W121 CS21-14 CS21-14 Seguard 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC OG191-OY Target 0 - 0.1m West or east bank? Please includ 281W121 CS21-14 CS21-14 Seguard 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC OG191-OY Target 0 - 0.1m West or east bank? Please includ 281W121 CS21-14 CS21-14 CS21-14 CS21-17 Zbags and 2	F
271(017.1) $LE21-17$ (PGSW000)Vegetation sample: 20 grams of one species in a ziploc bag $ERST.$ $271(w17.1)$ Somewhere in reach between RC17-07 and RC17-03 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC $O6191-OS$ Target 0-0.1mWest or east bank? $271(w17.1)$ Somewhere in reach between RC17-07 and RC17-03 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC $O6191-OS$ $West or east bank?$ $West or east bank?271(w17.1)Somewhere in reach between RC17-07and RC17-03S121-XX for grassLE21-XX for leavesPease includchromium, Grain size and hydrometer,TOCO6191-OSWest or east bank?Pease includPease includ281w121CS21-14CS21-14Somewhere in reach botween RC17-07and RC17-032 bags and 2 jars: Metals, speciatedchromium, Grain size and hydrometer,TOCO6191-OYTarget 0-0.1mWest or east bank?Pease includwest or east bank?281w121CS21-14CS21-14SC21-XX for grassGR21-XX for grassGR21-XX for grassGR21-XX for grassCR21-XX f$	le sketch relative to creek and soil sample
Z7/Wi71 CS21-13 CS21-13 CS21-13 CS21-13 CS21-13 CS21-13 Somewhere in reach between RC17-07 Z bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC O6191-05 Target 0 - 0.1m West or east bank? Please includ 73:25 Si21-XX for grass Si21-XX for grass Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ 73:25 LE21-XX for leaves LE21-130 Somewhere in reach between RC17-07 Z bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC West or east bank? Please includ 73:75 LE21-XX for grass LE21-130 Somewhere in reach between RC17-07 Z bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC Target 0 - 0.1m West or east bank? Please includ 78/W121 CS21-14 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 06191-094 Target 0 - 0.1m West or east bank? Please includ 78/W121 Si21-XX for earthworms Vegetation sample: 20 grams of one chromium, Grain size and hydrometer, TOC 06191-094 Target 0 - 0.1m West or east bank? Please includ 78/W121 Si	
Z7/Wi71 CS21-13 CS21-13 CS21-13 CS21-13 CS21-13 Somewhere in reach between RC17-07 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ToC O6191-05 West or east bank? Please includ Z71 10/21 Si21-XX for grass LE21-XX for grass Si21-XX for grass Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ Z81 W121 CS21-14 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ToC O6191-094 Target 0 - 0.1m West or east bank? Please includ Z81 W121 CS21-14 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ToC O6191-094 Target 0 - 0.1m West or east bank? Please includ Z81 W121 CS21-14 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, ToC O6191-094 Target 0 - 0.1m West or east bank? Please includ Z81 W121 Si21-XX for grass Vegetation sample: 20 grams of one chromium, Grain size and hydrometer, ToC O6191-094 Target 0 - 0.1m West or east bank? Please includ Z81 W121 Si21-XX for grass Vegetation sample: 20 grams o	
IS: CS and RC17-03 West or east bank? Please includ 7271 \u0121 Si21-XX for grass GR21-XX for grass LE21-XX for grass Vegetation sample: 20 grams of one species in a ziploc bag West or east bank? Please includ 73: 75: LE21-XX for grass Section sample: 20 grams of one species in a ziploc bag Target 0 - 0.1m West or east bank? Please includ 7281 \u0121 CS21-14 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC O6191-04 Target 0 - 0.1m West or east bank? Please includ 7281 \u0121 Si21-XX for earthworms GR21-XX for grass Vegetation sample: 20 grams of one sample: 20 grams of one O6191-04 Target 0 - 0.1m West or east bank? Please includ 7281 \u0121 Si21-XX for grass Vegetation sample: 20 grams of one Target 0 - 0.1m West or east bank? Please includ 7281 \u0121 Si21-XX for grass Vegetation sample: 20 grams of one Target 0 - 0.1m West or east bank? Please includ	
271 10 [21] Si21-XX for earthworms GR21-XX for grass LE21-XX for leaves LE21-XX for leaves LE21-13-D Vegetation sample: 20 grams of one species in a ziploc bag Target 0 - 0.1m West or east bank? 281 W121 CS21-14 Somewhere in reach between RC17-07 and RC17-03 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 06191-04 D6191-04 Target 0 - 0.1m West or east bank? 281 W121 Si21-XX for earthworms GR21-XX for grass Vegetation sample: 20 grams of one scripte no no West or east bank? Please include	le sketch relative to creek and soil sample
13:73: LE21-31 B-Powood Target 0 - 0.1m West or east bank? 28/w/21 CS21-14 CS21-14 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC D6191-04 Target 0 - 0.1m West or east bank? Please includ 28/w/21 Si21-XX for grass Vegetation sample 20 grams of one to provide hone Vegetation bank Please includ	
Z8/w121 CS21-14 CS21-19 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC D6191-09 Target 0 - 0.1m West or east bank? Z8/w121 Somewhere in reach between RC17-07 and RC17-03 2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC D6191-09 EAST Z8/w121 Si21-XX for earthworms Vegetation sample: 20 grams of one to be provide hand in a straight provide hand Vegetation bank? Please include hand	
78/10/21 Si21-XX for earthworms GR21-XX for grass Vegetation sample: 20 grams of one West or east bank? Please include	
28/16/21. SI21-XX for grass Vegetation sample: 20 grams of one	de sketch relative to creek and soil sample
LEZI-AA TOT reaves ZI - IV H species in a zhioc bay	
Target 0 - 0.1m West or east bank?	
28 [CO12] CS21-15 CS 21-15 - Somewhere in reach between RC17-07 and RC17-03 2bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC 06191-03	ε.
Vest or east bank? Please includ	de sketch relative to creek and soil sample
-28/10/21 GR21-XX for grass Vegetation sample: 20 grams of one species in a ziploc bag	
Target 0 - 0.1m West or east bank?	
29 (10121 CS21-16 CS21-16, In area with skunk cabbage west of RC17 ToC TOC TOC TOC TOC TOC TOC TOC TOC TOC TO	
West or east bank? Please inclu	de sketch relative to creek and soil sample
29/10/21. SI21-XX for grass GR21-XX for grass LE21-XX for grass LE21-XX for leaves LE21-XX for le	
Target 0 - 0.1m West or east bank?	
ZALUO [Z] CS21-17 CSZ1-17 Same area as CS21-16 but outside the Chromium, Grain size and hydrometer, OG(91-09) WEST	
West or east back?	de sketch relative to creek and soil sample
ZAIWIZI SI21-XX for earthworms GR21-XX for grass LE21-XX for leaves ZI-IZA for leaves ZI-IZA for leaves	

Project Name	KELSET Creek	and the second					
Project #	21455123	the set of the set of the	A	GPS		-	
Collected By	Sean Sutherland / Gordon Phillippe			UTM Zone '	Constant.		
Verified By	Contraction of the second s	and the second		Page	-		of
Date / Time	Location Description	Analyses	SCN	Depth (m bgs)	Coordinates	FDA/FD	Description
29/10/21	CS21-18 (Near RC17-02)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06191-10	Target 0 - 0.1m	West or east bank?	,	
29/10/21	SI21-XX for earthworms GR21-XX for grass LE21-XX for leaves LE21-XX for leaves	Vegetation sample: 20 grams of one species in a ziploc bag	-		West or east bank?		Please include sketch relative to creek and soil sample
28/10/21	CSZ1-19	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06191-01	Target 0 - 0.1m	West or east bank? NOTOTH EAST	200	
28/10/21	(At flagged blackberry sample) SI21-XX for earthworms GR21-XX for grass	SI21-XX Earthworm sample: 20 grams of earthworms in glass jars with moistened Kimwipe and holes in lid			West or east bank? NORTH EAST		Please include sketch relative to creek and soil sample
15/00/21	LEZI-XA IOI IBAVES LEZI-19 (Rlauberry)	Vegetation sample: 20 grams of one species in a ziploc bag	06-11-03		West or east bank? DORTH EAST		Please include sketch relative to creek and soil sample
28/10121	CS21-20 (Near culvert and RC17-01)	2 bags and 2 jars: Metals, speciated chromium, Grain size and hydrometer, TOC	06191-02	Target 0 - 0.1m	West or east bank? NONTH EABT-		
2810121.	SI21-XX for earthworms GR21-XX for grass LE21-XX for leaves (Alcler)	Vegetation sample: 20 grams of one species in a ziploc bag	opt-od		West or east bank? Nororth EAST		Please include sketch relative to creek and soil sample
20.002	KELSET Creek Flying Invertebrate Loc	ations					3 samples 1 Duplicate
5 - (75) 24	FI21-01	Malaise traps - place insects from each day into a small ziploc bag, label with date and Sample ID	an part		West or east bank?		Please include sketch relative to creek
anda a Articla (F121-02	Malaise traps - place insects from each day into a small ziploc bag, label with date and Sample ID	SENI-02		West or east bank?		Please include sketch relative to creek
Saliotzi	FI21-03	Malaise traps - place insects from each day into a small ziploc bag, label with date and Sample ID			West or east bank?		Please include sketch relative to creek

ATTACHMENT 2

Laboratory Certificates of Analysis

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) 219-800 BURRARD ST VANCOUVER, BC V6Z 0B9 604-671-1831 ATTENTION TO: Robyn Chatwin-Davies PROJECT: 21455123 AGAT WORK ORDER: 21V822374 SOIL ANALYSIS REVIEWED BY: Clarissa Muljono, Report Writer DATE REPORTED: Nov 10, 2021 PAGES (INCLUDING COVER): 22 VERSION*: 4

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*Notes

VERSION 4:Version 1 issued on October 29, 2021 to report Metals and TOC on samples 3141211, -214, -215, -216. Complete results to follow.

Version 2 issued on November 1, 2021 to report Metals and TOC on all samples. Version 2 is an amendment of version 1.

Version 3 issued on November 9, 2021 to report complete results. Version 3 is an amendment of version 2.

Version 4 issued on November 10, 2021 to report Trivalent Chromium as part of Speciated Chromium. Version 4 is an amendment of version 3.

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V4)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	

(APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 22

AGAT WORK ORDER: 21V822374 PROJECT: 21455123

Metals in Soil - Public Works (ug/g)

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

			metale			r9'9/				
DATE RECEIVED: 2021-10-26							[DATE REPORT	ED: 2021-11-10	
		SAMPLE DESCRIPTIO	DN: 06185-01	06185-02 Soil	06185-03 Soil	06185-04 Soil	06185-05 Soil	06185-06 Soil	06185-07 Soil	06185-08 Soil
		DATE SAMPLE	:D: 2021-10-21 09:45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11:45	2021-10-21 11:45	2021-10-21 12:20	2021-10-21 13:00	2021-10-21 14:30
Parameter	Unit	G/S RDL	3141189	3141195	3141196	3141197	3141198	3141199	3141200	3141201
Aluminum	µg/g	10	21400	14700	17400	13000	11100	10800	8990	18200
Antimony	µg/g	0.1	0.2	0.2	0.2	0.2	4.2	0.2	0.3	0.3
Arsenic	µg/g	1	4	3	2	5	13	3	3	6
Barium	µg/g	0.5	81.1	49.9	73.4	54.8	36.5	42.6	47.3	71.8
Beryllium	µg/g	0.1	0.4	0.3	0.3	0.3	0.2	0.2	0.2	0.4
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium	µg/g	0.01	0.29	1.04	1.19	1.11	0.93	0.84	3.19	1.64
Calcium	µg/g	10	8780	7620	6230	6960	6060	5390	4060	6360
Chromium	µg/g	1	39	33	26	21	19	24	24	40
Cobalt	µg/g	0.1	12.5	12.8	12.5	11.3	8.9	9.1	8.5	14.5
Copper	µg/g	0.2	32.3	31.4	20.5	19.5	22.2	16.6	18.6	30.1
Iron	µg/g	10	26900	29400	31000	24500	21800	20300	13100	29600
Lead	µg/g	0.1	5.1	5.7	6.5	4.4	12.5	5.6	10.4	6.9
Magnesium	µg/g	10	8160	7420	7820	6000	5050	4700	3270	7650
Manganese	µg/g	1	544	413	573	935	563	380	276	481
Mercury	µg/g	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03
Molybdenum	µg/g	0.2	0.5	0.4	0.5	0.6	1.0	0.4	0.5	0.3
Nickel	µg/g	0.5	28.0	25.0	22.6	17.6	14.9	14.2	13.7	29.3
Phosphorus	µg/g	5	603	658	631	763	527	529	369	676
Potassium	µg/g	5	608	458	658	374	296	430	420	952
Selenium	µg/g	0.1	0.4	0.3	0.3	0.3	0.2	<0.1	<0.1	0.3
Lithium	µg/g	0.5	13.8	8.5	11.5	6.3	5.6	6.3	6.1	13.2
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sodium	µg/g	5	360	292	318	219	224	239	199	433
Strontium	µg/g	1	40	26	30	34	29	26	22	29
Thallium	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	µg/g	0.2	0.5	3.6	0.5	1.6	1.3	0.4	0.5	0.6
Titanium	µg/g	1	1120	1370	1380	1050	1030	1070	734	1320
Uranium	ua/a	0.2	0.6	0.6	0.4	0.3	0.2	0.4	0.4	0.3

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-10-26								l	DATE REPORT	ED: 2021-11-10			
		SAMPLE DES	CRIPTION:	06185-01	06185-02	06185-03	06185-04	06185-05	06185-06	06185-07	06185-08		
		SAM	IPLE TYPE:	Soil									
		DATE	SAMPLED:	2021-10-21 09:45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11:45	2021-10-21 11:45	2021-10-21 12:20	2021-10-21 13:00	2021-10-21 14:30		
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141198	3141199	3141200	3141201		
Vanadium	µg/g		1	75	66	57	55	47	46	36	73		
Zinc	µg/g		1	71	171	147	144	253	142	162	148		
Zirconium	µg/g		0.1	2.6	6.0	4.2	3.7	3.9	3.1	1.3	6.4		
рН 1:2	pH units		0.10	6.52	7.50	7.46	7.54	7.61	7.00	6.03	5.98		

Metals in Soil - Public Works (ug/g)

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Metals in Soil - Public Works (μg/g) DATE RECEIVED: 2021-10-26 SAMPLE DESCRIPTION: 06185-09 06185-10 06187-01 06187-02 06187-03 06187-05													
Parameter	Unit	G/S RDL	3141202	3141203	3141204	3141205	3141206	3141207	3141208	3141209			
Aluminum	hð\ð	10	22000	13000	11700	12000	12600	7830	22600	9270			
Antimony	hð\ð	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.7	0.5			
Arsenic	hð\ð	1	6	2	4	<1	5	2	7	4			
Barium	µg/g	0.5	79.6	59.6	48.4	56.6	49.3	42.9	113	55.1			
Beryllium	µg/g	0.1	0.3	0.2	0.3	0.3	0.3	0.2	0.5	0.2			
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Cadmium	µg/g	0.01	1.47	1.30	1.53	0.68	1.13	1.00	13.8	6.18			
Calcium	µg/g	10	6490	4580	4510	5220	5910	3820	8060	7340			
Chromium	µg/g	1	45	25	27	15	28	14	74	30			
Cobalt	µg/g	0.1	16.8	8.8	9.7	7.5	10.5	6.5	16.6	9.1			
Copper	µg/g	0.2	33.9	17.7	19.1	13.8	21.9	10.5	54.9	30.8			
Iron	µg/g	10	34600	17100	20400	21600	22400	15900	31100	15900			
Lead	µg/g	0.1	8.1	7.1	5.9	5.8	5.9	6.6	43.1	11.3			
Magnesium	µg/g	10	9260	4120	4790	4900	5740	2620	7290	3320			
Manganese	µg/g	1	565	236	440	566	472	531	806	594			
Mercury	µg/g	0.01	0.02	0.02	0.02	0.01	0.01	0.02	0.10	0.04			
Molybdenum	µg/g	0.2	0.3	0.4	0.2	0.3	0.3	0.4	1.0	1.0			
Nickel	µg/g	0.5	36.0	17.2	18.7	12.4	19.2	9.3	33.1	15.1			
Phosphorus	µg/g	5	670	442	527	609	489	594	1330	529			
Potassium	µg/g	5	1210	526	583	506	612	363	1110	443			
Selenium	µg/g	0.1	0.3	0.1	0.3	0.4	0.1	0.3	0.7	0.5			
Lithium	µg/g	0.5	14.2	8.6	8.8	8.2	8.4	4.8	17.1	5.8			
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
Sodium	µg/g	5	496	226	297	218	250	145	947	233			
Strontium	µg/g	1	31	26	25	25	22	20	57	38			
Thallium	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
Tin	µg/g	0.2	0.6	0.5	0.4	0.3	0.3	0.2	1.3	0.6			
Titanium	µg/g	1	1450	807	897	974	1070	666	1100	684			
Uranium	na/a	0.2	0.4	0.5	0.3	0.3	0.3	0.2	1.1	0.9			

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-10-26								DATE REPORTED: 2021-11-10							
		SAMPLE DES	SCRIPTION:	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05				
		SAMPLE TYPE: DATE SAMPLED:		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
				2021-10-21 14:30	2021-10-21 15:15	2021-10-21 16:00	2021-10-21 09:00	2021-10-21 10:15	2021-10-21 11:20	2021-10-21 12:10	2021-10-21 12:30				
Parameter	Unit	G/S	RDL	3141202	3141203	3141204	3141205	3141206	3141207	3141208	3141209				
Vanadium	µg/g		1	84	43	49	40	52	30	71	38				
Zinc	µg/g		1	164	132	143	90	128	109	419	277				
Zirconium	µg/g		0.1	6.4	1.9	3.5	4.2	3.6	1.1	3.4	1.3				
pH 1:2	pH units		0.10	5.98	6.23	7.38	7.19	6.39	7.16	5.81	6.26				

Metals in Soil - Public Works (ug/g)

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Metals in Soil - Public Works (µg/g)														
DATE RECEIVED: 2021-10-26	ATE RECEIVED: 2021-10-26 DATE REPORTED: 2021-11-10 SAMPLE DESCRIPTION: 06187-06 06189-01 06189-02 06189-03 06189-04													
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	06187-06 Soil 2021-10-21 14:00	06189-01 Soil 2021-10-22 09:00	06189-02 Soil 2021-10-22 09:00	06189-03 Soil 2021-10-22 11:00	06189-04 Soil 2021-10-22 12:00							
Parameter	Unit	G/S RDL	3141210	3141211	3141214	3141215	3141216							
Aluminum	µg/g	10	19300	15200	16000	26700	25500							
Antimony	µg/g	0.1	0.5	0.5	0.4	0.3	0.3							
Arsenic	µg/g	1	7	2	7	4	6							
Barium	µg/g	0.5	109	57.4	59.2	106	133							
Beryllium	µg/g	0.1	0.4	0.3	0.3	0.4	0.4							
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5							
Cadmium	µg/g	0.01	12.6	0.17	0.17	0.23	0.21							
Calcium	µg/g	10	6920	6700	6470	6870	7920							
Chromium	µg/g	1	86	21	26	40	45							
Cobalt	µg/g	0.1	13.0	8.0	9.9	13.1	15.8							
Copper	µg/g	0.2	46.1	29.0	31.0	39.1	42.4							
Iron	µg/g	10	25700	22200	22500	33300	39400							
Lead	µg/g	0.1	44.0	14.4	8.8	8.1	6.7							
Magnesium	µg/g	10	6130	5430	5640	8090	9750							
Manganese	µg/g	1	629	572	637	528	1500							
Mercury	µg/g	0.01	0.07	0.03	0.03	0.04	0.03							
Molybdenum	µg/g	0.2	0.9	0.6	0.5	0.5	1.9							
Nickel	µg/g	0.5	27.6	18.1	21.1	31.3	44.7							
Phosphorus	µg/g	5	1320	619	596	491	777							
Potassium	µg/g	5	921	700	740	1190	1770							
Selenium	µg/g	0.1	0.5	0.1	0.3	0.3	0.4							
Lithium	µg/g	0.5	14.5	9.4	9.6	17.0	22.2							
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5							
Sodium	µg/g	5	474	309	307	404	649							
Strontium	µg/g	1	49	33	32	45	64							
Thallium	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1							
Tin	µg/g	0.2	1.0	0.5	0.7	0.6	0.5							
Titanium	µg/g	1	952	1050	1170	1470	1220							
Uranium	ua/a	0.2	0.9	0.3	0.3	0.6	0.8							

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-10-26									DATE REPORTED: 2021-11-10
		SAMPLE DES	SCRIPTION:	06187-06	06189-01	06189-02	06189-03	06189-04	
		SAN	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2021-10-21 14:00	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00	
Parameter	Unit	G/S	RDL	3141210	3141211	3141214	3141215	3141216	
Vanadium	µg/g		1	60	51	63	85	87	
Zinc	µg/g		1	322	110	124	66	107	
Zirconium	µg/g		0.1	2.2	3.1	3.3	4.8	4.1	
pH 1:2	pH units		0.10	5.92	7.87	7.67	6.85	7.42	

Metals in Soil - Public Works (µg/g)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141189-3141216 Results are based on the dry weight of the sample

Analysis performed at AGAT Vancouver (unless marked by *)

AGAT WORK ORDER: 21V822374 PROJECT: 21455123

Particle Size by SIEVE - 19mm, 4.75mm & 75um

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

					-						
DATE RECEIVED: 2021-10-26								I	DATE REPORT	ED: 2021-11-10	
		SAMPLE DESC	RIPTION:	06185-01	06185-02	06185-03	06185-04	06185-06	06185-07	06185-08	06185-09
		SAMP	LE IYPE:	Soil	Soil	Soil	Soil	Soil	Soll	Soll	Soll
		DATE S	AMPLED:	2021-10-21 09·45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11·45	2021-10-21 12·20	2021-10-21 13:00	2021-10-21 14·30	2021-10-21 14·30
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141199	3141200	3141201	3141202
Sieve Analysis - 19 mm	%		1	14	6	26	33	9	25	<1	<1
Sieve Analysis - 4.75 mm	%		1	60	23	30	39	72	41	20	11
Sieve Analysis - 75 microns	%		1	4	42	21	20	14	26	22	28
Sieve Texture				Fine							
		SAMPLE DESC	RIPTION:	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05	06187-06
		SAMP	LE TYPE:	Soil							
		DATE S	AMPLED:	2021-10-21 15:15	2021-10-21 16:00	2021-10-21 09:00	2021-10-21 10:15	2021-10-21 11:20	2021-10-21 12:10	2021-10-21 12:30	2021-10-21 14:00
Parameter	Unit	G/S	RDL	3141203	3141204	3141205	3141206	3141207	3141208	3141209	3141210
Sieve Analysis - 19 mm	%		1	<1	<1	7	6	<1	<1	<1	<1
Sieve Analysis - 4.75 mm	%		1	<1	7	44	48	<1	1	<1	<1
Sieve Analysis - 75 microns	%		1	46	55	39	19	88	33	84	16
Sieve Texture				Fine	Coarse	Fine	Fine	Coarse	Fine	Coarse	Fine
		SAMPLE DESC	RIPTION:	06189-01	06189-02	06189-03	06189-04				
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil				
		DATE S	AMPLED:	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00				
Parameter	Unit	G/S	RDL	3141211	3141214	3141215	3141216				
Sieve Analysis - 19 mm	%		1	<1	<1	<1	31				
Sieve Analysis - 4.75 mm	%		1	11	29	8	25				
Sieve Analysis - 75 microns	%		1	52	47	23	9				
Sieve Texture				Coarse	Fine	Fine	Fine				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141189-3141216 Value reported is amount of sample retained on sieve after wash with water and represents proportion by weight particles larger than indicated sieve size. Sieve Texture is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

				00117			· · /								
DATE RECEIVED: 2021-10-26							DATE REPORTED: 2021-11-10 06185-04 06185-05 06185-06 06185-07 06185-08 Soil Soil Soil Soil Soil								
		SAMPLE DES	CRIPTION:	06185-01	06185-02	06185-03	06185-04	06185-05	06185-06	06185-07	06185-08				
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2021-10-21 09:45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11:45	2021-10-21 11:45	2021-10-21 12:20	2021-10-21 13:00	2021-10-21 14:30				
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141198	3141199	3141200	3141201				
hromium, Hexavalent	mg/L		0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	N/A	<0.3				
		SAMPLE DES	CRIPTION:	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05				
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2021-10-21 14:30	2021-10-21 15:15	2021-10-21 16:00	2021-10-21 09:00	2021-10-21 10:15	2021-10-21 11:20	2021-10-21 12:10	2021-10-21 12:30				
Parameter	Unit	G/S	RDL	3141202	3141203	3141204	3141205	3141206	3141207	3141208	3141209				
Chromium, Hexavalent	mg/L		0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	N/A	N/A				
		SAMPLE DES	CRIPTION:	06187-06	06189-01	06189-02	06189-03	06189-04							
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil							
		DATE	SAMPLED:	2021-10-21 14:00	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00							
Parameter	Unit	G/S	RDL	3141210	3141211	3141214	3141215	3141216							
Chromium, Hexavalent	mg/L		0.3	N/A	<0.3	<0.3	<0.3	<0.3							

Soil Analysis - Chromium (VI)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141189-3141199 Result is based on the dry weight of the sample.

3141200 N/A - Unable to perform Chromium Hexavalent analysis due to color interference. Result is based on the dry weight of the sample.

3141201-3141216 Result is based on the dry weight of the sample.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V4)

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Soil Analysis - Texture (Gravel, Sand, Silt, Clay) (100 %)

DATE RECEIVED: 2021-10-26 DATE REPORTED: 2021-11-10											
		SAMPLE DES	CRIPTION:	06185-01	06185-02	06185-03	06185-04	06185-06	06185-07	06185-08	06185-09
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	SAMPLED:	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21
				09:45	10:15	10:50	11:45	12:20	13:00	14:30	14:30
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141199	3141200	3141201	3141202
Clay	%		1	12	6	10	2	5	4	25	32
Gravel	%		1	15	23	13	8	2	1	9	12
Sand	%		1	48	62	63	86	84	81	46	34
Silt	%		1	26	9	15	4	9	14	20	22
Soil Texture				Sandy Loam	Loamy Sand	Sandy Loam	Sand	Loamy Sand	Loamy Sand	Sandy Clay Loam	Clay Loam
		SAMPLE DES	CRIPTION:	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05	06187-06
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATES	DATE SAMPLED:		2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21
					16:00	09:00	10:15	11:20	12:10	12:30	14:00
Parameter	Unit	G/S	RDL	3141203	3141204	3141205	3141206	3141207	3141208	3141209	3141210
Clay	%		1	11	13	6	17	4	16	4	12
Gravel	%		1	1	10	5	14	2	3	5	<1
Sand	%		1	61	64	85	50	87	42	84	45
Silt	%		1	27	13	4	18	6	39	7	42
Soil Texture				Sandy Loam	Sandy Loam	Sand	Sandy Clay Loam	Sand	Loam	Sand	Loam
		SAMPLE DES	CRIPTION:	06189-01	06189-02	06189-03	06189-04				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATES	SAMPLED:	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00				
Parameter	Unit	G/S	RDL	3141211	3141214	3141215	3141216				
Clay	%		1	9	5	29	31				
Gravel	%		1	6	9	6	7				
Sand	%		1	72	77	33	34				
Silt	%		1	11	7	32	28				
Soil Texture				Sandy Loam	Loamy Sand	Clay Loam	Clay Loam				

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

DATE REPORTED: 2021-11-10

SAMPLED BY:

Soil Analysis - Texture (Gravel, Sand, Silt, Clay) (100 %)

DATE RECEIVED: 2021-10-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141189-3141216 Soil Texture is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited. Analysis performed at AGAT Calgary (unless marked by *)

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

				Oper			11				
DATE RECEIVED: 2021-10-26								I	DATE REPORT	ED: 2021-11-10	
		SAMPLE DES	CRIPTION:	06185-01	06185-02	06185-03	06185-04	06185-05	06185-06	06185-07	06185-08
		SAM	IPLE TYPE:	Soil							
		DATE	SAMPLED:	2021-10-21 09:45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11:45	2021-10-21 11:45	2021-10-21 12:20	2021-10-21 13:00	2021-10-21 14:30
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141198	3141199	3141200	3141201
Chromium, Trivalent	µg/g		0.4	39.0	33.0	26.0	21.0	19.0	24.0	NA	40.0
		SAMPLE DES	CRIPTION:	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05
		SAM	IPLE TYPE:	Soil							
		DATE	SAMPLED:	2021-10-21 14:30	2021-10-21 15:15	2021-10-21 16:00	2021-10-21 09:00	2021-10-21 10:15	2021-10-21 11:20	2021-10-21 12:10	2021-10-21 12:30
Parameter	Unit	G/S	RDL	3141202	3141203	3141204	3141205	3141206	3141207	3141208	3141209
Chromium, Trivalent	µg/g		0.4	45.0	25.0	27.0	15.0	28.0	14.0	NA	NA
		SAMPLE DES	CRIPTION:	06187-06	06189-01	06189-02	06189-03	06189-04			
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil			
		DATE	SAMPLED:	2021-10-21 14:00	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00			
Parameter	Unit	G/S	RDL	3141210	3141211	3141214	3141215	3141216			
Chromium, Trivalent	µg/g		0.4	NA	21.0	26.0	40.0	45.0			
1											

Speciated Chromium in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141189-3141199 Results are based on the dry weight of the sample

Trivalent Chromium result is a calculation based on Chromium performed at AGAT Vancouver and Hexavalent Chromium performed at AGAT Calgary.

3141200 Results are based on the dry weight of the sample

Trivalent Chromium result is a calculation based on Chromium performed at AGAT Vancouver and Hexavalent Chromium performed at AGAT Calgary. N/A - Unable to perform Chromium Hexavalent analysis due to color interference.

3141201-3141207 Results are based on the dry weight of the sample

Trivalent Chromium result is a calculation based on Chromium performed at AGAT Vancouver and Hexavalent Chromium performed at AGAT Calgary.

3141208-3141210 Results are based on the dry weight of the sample

Trivalent Chromium result is a calculation based on Chromium performed at AGAT Vancouver and Hexavalent Chromium performed at AGAT Calgary. N/A - Unable to perform Chromium Hexavalent analysis due to color interference.

3141211-3141216 Results are based on the dry weight of the sample

Trivalent Chromium result is a calculation based on Chromium performed at AGAT Vancouver and Hexavalent Chromium performed at AGAT Calgary.

Analysis performed at AGAT Vancouver (unless marked by *)

Certified By:

AGAT WORK ORDER: 21V822374 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Total Organic Carbon in Soil (LECO) (Calc) (%)

DATE RECEIVED: 2021-10-26								[DATE REPORTED: 2021-11-10				
		SAMPLE DESC	CRIPTION:	06185-01 Soil	06185-02 Soil	06185-03 Soil	06185-04 Soil	06185-05 Soil	06185-06 Soil	06185-07 Soil	06185-08 Soil		
		DATE S	SAMPLED:	2021-10-21 09:45	2021-10-21 10:15	2021-10-21 10:50	2021-10-21 11:45	2021-10-21 11:45	2021-10-21 12:20	2021-10-21 13:00	2021-10-21 14:30		
Parameter	Unit	G/S	RDL	3141189	3141195	3141196	3141197	3141198	3141199	3141200	3141201		
Carbon - Total	%		0.02	2.13	0.95	1.62	0.46	0.31	1.54	1.92	0.57		
Inorganic Carbon - Total	%		0.02	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
Organic Carbon-Total (Calc)	%		0.02	2.08	0.95	1.62	0.46	0.31	1.54	1.92	0.57		
		SAMPLE DESC	CRIPTION:	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04	06187-05		
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE S	SAMPLED:	2021-10-21 14:30	2021-10-21 15:15	2021-10-21 16:00	2021-10-21 09:00	2021-10-21 10:15	2021-10-21 11:20	2021-10-21 12:10	2021-10-21 12:30		
Parameter	Unit	G/S	RDL	3141202	3141203	3141204	3141205	3141206	3141207	3141208	3141209		
Carbon - Total	%		0.02	0.54	2.39	0.51	0.55	1.06	0.75	9.17	2.25		
Inorganic Carbon - Total	%		0.02	<0.02	<0.02	<0.02	<0.02	0.08	<0.02	0.10	<0.02		
Organic Carbon-Total (Calc)	%		0.02	0.54	2.39	0.51	0.55	0.98	0.75	9.07	2.25		
		SAMPLE DESC SAMF	CRIPTION: PLE TYPE:	06187-06 Soil	06189-01 Soil	06189-02 Soil	06189-03 Soil	06189-04 Soil					
		DATE SAMPLED:		2021-10-21 14:00	2021-10-22 09:00	2021-10-22 09:00	2021-10-22 11:00	2021-10-22 12:00					
Parameter	Unit	G/S	RDL	3141210	3141211	3141214	3141215	3141216					
Carbon - Total	%		0.02	4.90	0.89	0.89	1.09	0.85					
Inorganic Carbon - Total	%		0.02	<0.02	<0.02	<0.02	<0.02	0.02					
Organic Carbon-Total (Calc)	%		0.02	4.90	0.89	0.89	1.09	0.83					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Vancouver (unless marked by *)

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V4)

Page 14 of 22

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822374

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Soil Analysis

RPT Date: Nov 10, 2021			C	OUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	ptable nits	Recovery	Acce	ptable nits	Recovery	Acce Lir	ptable nits
							Value	Lower	Upper		Lower	Upper		Lower	Uppe
Metals in Soil - Public Works	(µg/g)														
Aluminum	3141195		14700	15300	3.9%	< 10	100%	70%	130%	109%	85%	115%			
Antimony	3143330		0.2	0.1	NA	< 0.1	108%	70%	130%	99%	85%	115%			
Arsenic	3143330		3	3	NA	< 1	95%	70%	130%	106%	85%	115%			
arium 3143330			79.1	66.2	17.7%	< 0.5	114%	70%	130%	95%	85%	115%			
Beryllium	ryllium 3143330		0.3	0.3	NA	< 0.1	103%	70%	130%	105%	85%	115%			
smuth 3143330			<0.5	<0.5	NA	< 0.5				101%	85%	115%			
Cadmium	admium 3143330		0.19	0.19	1.0%	< 0.01	97%	70%	130%	103%	85%	115%			
Calcium	licium 3141195		7620	7730	1.4%	< 10	102%	70%	130%	103%	85%	115%			
Chromium	omium 3143330		28	33	17.3%	< 1	109%	70%	130%	114%	85%	115%			
Cobalt	3143330		10.9	11.3	3.3%	< 0.1	103%	70%	130%	105%	85%	115%			
Copper	3143330		41.1	42.1	2.4%	< 0.2	107%	70%	130%	114%	85%	115%			
Iron	3141195		29400	25900	12.6%	< 10	100%	70%	130%	107%	85%	115%			
Lead	3143330		5.1	4.4	14.4%	< 0.1	103%	70%	130%	102%	85%	115%			
Magnesium	3141195		7420	7500	1.0%	< 10	103%	70%	130%	101%	85%	115%			
Manganese	3143330		648	640	1.2%	< 1	109%	70%	130%	100%	85%	115%			
Mercury	3143330		0.03	0.02	NA	< 0.01	111%	70%	130%	106%	85%	115%			
Molybdenum	3143330		0.3	0.2	NA	< 0.2	98%	70%	130%	98%	85%	115%			
Nickel	3143330		24.3	25.8	6.1%	< 0.5	108%	70%	130%	115%	85%	115%			
Phosphorus	3141195		658	562	15.8%	< 5	106%	70%	130%	97%	85%	115%			
Potassium	3141195		458	476	3.9%	< 5	95%	70%	130%	103%	85%	115%			
Selenium	3143330		0.3	0.4	NA	< 0.1				105%	85%	115%			
Lithium	3143330		9.4	9.1	2.7%	< 0.5				103%	85%	115%			
Silver	3143330		<0.5	<0.5	NA	< 0.5	109%	70%	130%	102%	85%	115%			
Sodium	3141195		292	345	16.5%	< 5	90%	70%	130%	103%	85%	115%			
Strontium	3143330		23	21	6.9%	< 1	103%	70%	130%	100%	85%	115%			
Thallium	3143330		<0.1	<0.1	NA	< 0.1	103%	70%	130%	100%	85%	115%			
Tin	3143330		0.4	0.3	NA	< 0.2	106%	70%	130%	90%	85%	115%			
Titanium	3141195		1370	1450	5.9%	< 1	111%	70%	130%	104%	85%	115%			
Uranium	3143330		0.3	0.2	NA	< 0.2	118%	70%	130%	102%	85%	110%			
Vanadium	3143330		79	75	4.9%	< 1	109%	70%	130%	106%	85%	115%			
Zinc	3143330		50	52	3.0%	< 1	101%	70%	130%	111%	85%	115%			
Zirconium	3143330		4.8	5.3	10.9%	< 0.1				97%	85%	115%			
pH 1:2	3141195		7.50	7.49	0.1%		101%	90%	110%	100%	95%	105%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Metals in Soil - Public Works (µ	ıg/g)										
Aluminum	3146181	21700	21000	3.3%	< 10	97%	70%	130%	102%	85%	115%
Antimony	3146181	0.5	0.4	NA	< 0.1	101%	70%	130%	102%	85%	115%
Arsenic	3146181	7	6	15.4%	< 1	89%	70%	130%	101%	85%	115%

AGAT QUALITY ASSURANCE REPORT (V4)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 15 of 22

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822374

PROJECT: 21455123

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Soil Analysis (Continued)

RPT Date: Nov 10, 2021		DUPLICATE			REFERENCE MATERIAL			METHOD	BLANK	SPIKE					
DADAMETED	Patab	Sample		Dup #2		Method Blank	Measured	Acce	ptable nits	Basavary	Acce	ptable	Basevery	Acce	ptable nits
FARAMETER	Balch	ld	Dup #1	Dup #2	RFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
Barium	3146181	•	130	133	2.2%	< 0.5	103%	70%	130%	100%	85%	115%			
Beryllium	3146181		0.4	0.4	NA	< 0.1	104%	70%	130%	99%	85%	115%			
Bismuth	3146181		0.6	0.6	NA	< 0.5				100%	85%	115%			
Cadmium	3146181		0.15	0.14	4.1%	< 0.01	86%	70%	130%	100%	85%	115%			
Calcium	3146181		5100	5090	0.2%	< 10	104%	70%	130%	106%	85%	115%			
Chromium	3146181		27	26	1.2%	< 1	102%	70%	130%	103%	85%	115%			
Cobalt	3146181		12.9	12.0	7.2%	< 0.1	96%	70%	130%	99%	85%	115%			
Copper	3146181		30.4	28.2	7.4%	< 0.2	94%	70%	130%	98%	85%	115%			
Iron	3146181		29200	27800	5.0%	< 10	105%	70%	130%	104%	85%	115%			
Lead	3146181		10.7	10.3	4.0%	< 0.1	104%	70%	130%	106%	85%	115%			
Magnesium	3146181		7230	6800	6.1%	< 10	109%	70%	130%	105%	85%	115%			
Manganese	3146181		731	721	1.4%	< 1	106%	70%	130%	105%	85%	115%			
Mercury	3146181		0.05	0.03	NA	< 0.01	109%	70%	130%	105%	85%	115%			
Molybdenum	3146181		0.6	0.7	NA	< 0.2	91%	70%	130%	94%	85%	115%			
Nickel	3146181		29.3	28.7	2.0%	< 0.5	92%	70%	130%	95%	85%	115%			
Phosphorus	3146181		420	452	7.4%	< 5	111%	70%	130%	98%	85%	115%			
Potassium	3146181		868	833	4.1%	< 5	96%	70%	130%	96%	85%	115%			
Selenium	3146181		0.2	0.5	NA	< 0.1				99%	85%	115%			
Lithium	3146181		26.5	24.7	7.0%	< 0.5				100%	85%	115%			
Silver	3146181		<0.5	<0.5	NA	< 0.5	100%	70%	130%	102%	85%	115%			
Sodium	3146181		313	318	1.3%	< 5	80%	70%	130%	102%	85%	115%			
Strontium	3146181		37	34	8.5%	< 1	98%	70%	130%	104%	85%	115%			
Thallium	3146181		<0.1	<0.1	NA	< 0.1	100%	70%	130%	100%	85%	115%			
Tin	3146181		0.4	0.4	NA	< 0.2	95%	70%	130%	89%	85%	115%			
Titanium	3146181		733	717	2.2%	< 1	110%	70%	130%	102%	85%	115%			
Uranium	3146181		0.4	0.4	NA	< 0.2	104%	70%	130%	103%	85%	110%			
Vanadium	3146181		63	61	4.4%	< 1	99%	70%	130%	103%	85%	115%			
Zinc	3146181		83	85	3.1%	< 1	88%	70%	130%	99%	85%	115%			
Zirconium	3146181		2.1	1.7	21.1%	< 0.1				102%	85%	115%			
pH 1:2	3146181		6.83	6.79	0.6%		103%	90%	110%	99%	95%	105%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Total Organic Carbon in Soil	(LECO) (Calc) (%)							
Carbon - Total	3141189	2.13	2.16	1.4%	< 0.02	95%	90%	110%
Inorganic Carbon - Total	3141189	0.05	0.03	NA	< 0.02	84%	80%	120%
Comments: RPDs are calculate	d using raw analytical o	data and not the	e rounded	duplicate v	alues repo	rted.		
Total Organic Carbon in Soil	(LECO) (Calc) (%)							
Inorganic Carbon - Total	3141189	0.05	0.03	NA	< 0.02	95%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V4)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822374

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Soil Analysis (Continued)

RPT Date: Nov 10, 2021			D	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Total Organic Carbon in Soil (LECO) (Calc) (%)

Carbon - Total	3141211 3141211	0.89	0.88	1.1%	< 0.02	96%	90%	110%
Inorganic Carbon - Total	3141211 3141211	<0.02	<0.02	NA	< 0.02	85%	80%	120%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Soil Analysis - Chromium (VI)

Chromium, Hexavalent	3141189 3141189	<0.3	<0.3	NA	< 0.3	97%	70%	130%	100%	80%	120%	97%	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Particle Size by SIEVE - 19mm, 4.75mm & 75um

•	,							
Sieve Analysis - 19 mm	3141204	<1	<1	NA	< 1		NA	NA
Sieve Analysis - 4.75 mm	3141204	7	6	15.4%	< 1		NA	NA
Sieve Analysis - 75 microns	3141204	55	62	12.0%	< 1	100% 80% 120%	NA	NA

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V4)

Page 16 of 22

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822374

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	I		
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822374

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Titanium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
рН 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER
Sieve Analysis - 19 mm	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Sieve Analysis - 4.75 mm	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Sieve Analysis - 75 microns	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Chromium, Hexavalent	SOIL 0600	BARTLETT, R.J., JAMES, B.R. (1996) S	SPECTROPHOTOMETER
Chromium, Trivalent	LAB-181-4016, INOR-181-6005	BC MOE Lab Manual Section C	CALCULATION
Carbon - Total	INOR-181-6027	ASTM E1915-11	LECO
Inorganic Carbon - Total	INOR-181-6027	Modified from ASTM E1915-11	COMBUSTION

_ 4								7 10							1.0	er				-
AN A			CH	IAIN	OF CU	ISTOD	Y RE	CORI	D/ANAL	YS	IS F	REC	UE	ST	(7)	2	No.	061	18	page _ of _3
Go	lder			Proje	ct Number:	711.00								Labo	ratory Nam	e:			21	1822374
Asso	ociates			Short	Title	61933	125		Golder	Conta	ct:			Addr	855'		+6H	1		02051
200 – 2920 Virtual W Vancouver, British Co	ay olumbia, Canad	da V5M 00	24	Calde	K ⁱ	ELSET	Cre	cell.	Rob	IAC	Jentre	in-F	Davie	<	8600	61	enly	0.05	Pad	MAN BRU
Telephone (604) 296	-4200 Fax (6	604) 298-5	5253	Solde	NGHUSM	mess 1:	older.cor	n Golder	r E-mail Addre	ss 2:	@q	older	.com	Telep	phone/Fax:	2 0	20181	Con T	ntact:	
Office Name:									1.0.	1			-	1 01	204 0113	~	50/A1	- 0	Park	Fee Yood
	lictoria.				EQu EQu	IS Facility C IS upload:	ode: 🗖	2966	6564	-				An	alvses Re	auired		26	OCT	9:15AM
Turnaround Time Criteria: CSR	: 24 hr	ME	□ 48 hr □ BC W	ater Quali	T2 hr] Other	×	Regular	(5 Days)	Ś			<	*/3				-	.	
Note: Final Repo	rts to be issued	l bv e-mai			Quote No	».: Bill	to PS	PC		taine	SIS		2	22				-	abov	
					TA: 7	00589"	122			Con	540	J	Pit	0 jo				TAT		
Sample Control	Sample	0- 4	Sample	Sample	Date	Time	Sample	QAQC	Related	er of	Z	0	50	53				o e le c	Selec	
Number (SCN)	Location	Jd. #	(m)	(over)	(D / M / Y)	Sampled (HH:MM)	l ype (over)	Code (over)	SCN (over)	dmu	RS	F	25	53				/ Hai) HSU	(over)
01			0-01							z			50	<u> 05</u>		<u> </u>			ř J	
06 85 -01	BEDZI-28		0-0.1	SE	Zoliotzi	09:45	STR			4	X	X	\times	\times					Y.	Clay go filt
06185-02	SEDZI-Z9				Zolioizi	10:15				4	\times	×	\times	\times					<i>°[</i> ,	Panel 42 geque
06185 -03	SEDZI-30				20110121	10:50				4	X	\times	\times	\times					19	MM (D-75")
06185-04	SEDZI-31				To/10/21	11:45		FDA	06135-05	4	\times	\times	\times	\times					4	.75 mm
06185 - 05	5E021-31				Willolz1	11:45		FD	06185-04	2	X	X	X		_				(8	ieve Number 4
06183 - 06	SED21-32				20/10/21	12:20				4	X	\times	\times	\times					7	SUM
06185 -07	SEDZI-33			_	20/10/21	13:00				4	X	\times	X	X					6	Telle Aumbre 700
06183 -08	SEDZI-34				Zoliolzi	14:30		FDA	06185-09	4	X	\times	\times	\times	53				Ì	
06185 -09	E021-34				20110171	14:30		FD	06185-08	Y	X	X	X	X						
06185 -10	SE021-35				20/10/21	15:15				Ц		×	X	X						
06185 -11	SEDZI-36		V		20/10/21	16:00				4	X	X	X	X		•				
- 12							0			-1									1	
Sampler's Signature:		متلتشا	Relinqui	shed by:	Signature	R	Compan	iy	Date	_		Tim	e		Received	by: S	ignature	e [Comp	any
Comments:		>	Mothad	of Shines		tot	601	der	25	110	121		09:	00			-			
	ICE Pa	chs.	wethod	or Snipme	Couri	er.	Waybill	NO.:			Rec	eived	for La	b by:		Dat	.e		Г	ime
			Shipped	by:	NCE	-	Shipmer	nt Conditio	on:		Ten	np (°C) Co	oler op	ened by:	Dat	e		т	îme
1					HUE		Seal Inta	act:				4			_					
\sim						WHITE: 0	Solder Co	opy \	rellow: L	.ab C	ору		m	c					-	

/

Page 19 of 22

ESED

VASSOCIATES 200 - 2920 Virtual Way Vancouver, British Columbia, Canada V5M 0C4 Title: Colder E-mail Address 1: Golder E-mail Address 2: Colder E-mail Address 1: Colder E-mail Address 2: Office Name: Image: Colder E-mail Address 1: Contact: Contact: Contact: Contact: <t< th=""></t<>
200 – 2920 Virtual Way Short Title: Go der Contact: Address: Vancouver, British Columbia, Canada V5M 0C4 Telephone (604) 296-4200 Fax (604) 298-5253 Golder E-mail Address 1: Golder E-mail Address 2: Telephone/Fax: Contact: Office Name: EQuIS Facility Code: 2246665644 Telephone/Fax: Contact: Turnaround Time: 24 hr 48 hr 72 hr Regular (5 Days) Analyses Required
Variadouver, British Columbia, Canada V5M 0C4 Telephone (604) 296-4200 Fax (604) 298-5253 Office Name:
Office Name: EQuIS Facility Code: 229666564 //ictacia EQuIS Facility Code: 229666564 Turnaround Time: 24 hr 48 hr 72 hr Criteria: CSP
EQuis Facility Code: 229666564 Analyses Required Turnaround Time: 24 hr 48 hr 72 hr Regular (5 Days)
Turnaround Time: 24 hr 48 hr 72 hr Regular (5 Days)
Cinena. LI CONE LI BC Water Quality LI Other
Note: Final Reports to be issued by e-mail
Sample Cantral Sample Sample Date Time Sample QAQC Related
Sample Control Sample Number (SCN) Location Sa. # Depth Matrix Sampled Sampled Type Code SCN Output Output Over <
06187-01 SED21-37 0-0.1 dE RIHORI D9:00 COMP 4 XXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXX
06187 - 02 SED21-38 1 10:15 1 4 X X X 9/ P-1 4/2
06187 - 03 SEDZI-39 11:20 4 X X X
06187 - 04 5021-410 12:10 4XXXX 43500
06187 - 05 SEDZI-4 12:30 4 X X X (General)
06187-06 SEDZI-47 V V 14:00 V YXXXX 75m
- 07
- 08
- 09
- 10
-11
- 12
Sampler's Signature: Relinquished by: Signature Company Date Time Received by: Signature Company
Comments: DNJLE Method of Shipment: Waybill No.: Received for Lab by: Date Time
Shipped by: Shipment Condition: Temp (°C) Cooler opened by: Date Time

Page 20 of 22

A	Idan		СН		OF CU	STOD	Y RE	CORI	D/ANAL	YSI	SF	REQ	UE	ST			No	. 06	18	9 page 3 of 3
Asso	ociates			Proje	ct Number:	2145	5123							Labor	atory Nam	ie:	768	T		
200 – 2920 Virtual W	ay			Short	Title:	LSET	0 ===	X	Golder	Conta	et:	and he	di se	Addre	ss:		va-			TT T
Telephone (604) 296	olumbia, Cana 4200 Fax (l	da V5M 00 604) 298-5	253	Golde	er E-mail Add	ress 1:	lder cor	Golder	E-mail Addre	ss 2:	@0	oldor	00m	Telep	hone/Fax:	Juen		C	ontac	
Office Name:		_		B _i Che	the march of the		1001.001	A 2	Gitlard	hui	(m) 2	oldu	Gan	60	24 60	<u>< x</u>	081	-	Jes	MERC YOOR
l	lictorio	<u>م</u>			EQu EQu	IS Facility C IS upload:	ode: <u>7</u> 7	9666	564		~~~			Ana	alvses Re	auirea				
Turnaround Time Criteria: CSR	: 24 hr	ME	□ 48 hr □ BC W	ater Quali	ty X 72 hr	Dither 5	H	Regular (5 Days)	ŝ			ć	*;		İ			ê	
Note: Final Report	ts to be issued	d by e-mail			Quote No	.: Bill	to PSP	C		Itaine	576	ī	j	2 re					T abov	
			Complet	0	TAT	100589	422			of Cor	154	0	120	S ph					ct TA	
Sample Control Number (SCN)	Sample Location	Sa. #	Depth '	Sample Matrix	Date Sampled	Sampled	Sample Type	QAQC Code	Related SCN	nber o	2	-	53	3-3-3					H (Sele	Remarks
			(m)	(over)	(D / M / Y)	(HH:MM)	(over)	(over)	(over)	Nun	Co		200	20					RUSI	(over)
06189 -01	SEDZI-RG	-01	0-0.1	SE	72/10/21	89:00	Ciont	FDA	06189-07	4	×	X	\times	\times						Voctory MoRIA
06189 - 02	SEDZI-EG	01		SE.		00:00	Comp	FD	06189-01	L	X	\times	\times	\times						Elas 1 9 march
06189-03	SED21-36	50		SE.		11:00	Comp			4	X	\times	×	\times						19mm (0.7511)
06189 - 04	SEDZI-BE	-03	V	SE		12:00	COMP			4	X	X	X	X						4.75 MM
- 05																				Free to El Y
- 06																				FSUM
-07																				Sicur NO 700)
- 08																				
- 09													_						_	
- 10									-					_					_	
- 12													_		_				-	
Sampler's Signature	A	12	Relinqui	shed by:	Signature	00	Compos		Date			Time			Destin)			
	45	7	- Contrigui	shed by.		35		older	Dale 25/	101	121	Time	; 		Received	1 DY: 8	Signati	Ire	Con	ipany
Comments:	Comments: ON ICE Method of Shipment: Waybill No.: Received for Lab by: Date Time																			
72 HR	RUSF	ł	Shipped	by:	RE	-	Shipmer Seal Inta	nt Conditio	on:		Terr	p (°C)	Cod	oler ope	ened by:	Da	te			Time
						WHITE: 0	Golder Co	opy)		ah C	onv	1				-				

N

Page 21 of 22

ESED

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order #____

Received From: Mail Comment SAMPLE QUANTITIES: Containers:	Waybill #: <u>C569662/C66</u> 17610
TIME SENSITIVE ISSUES: Earliest Date Sampled:	ALREADY EXCEEDED? Yes No
Non-Conformances: 3 temperatures of samples* and average of eac sample ID's) *use jars when available (1) <u>9 + 9 + 7 = 9 °C (2) / + (+ 7 =</u> Was ice or ice pack present: Yes No Integrity Issues:	h cooler: (record differing temperatures on the CoC next to $1 \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{(3)}{\rightarrow} \frac{9}{84848} = 8 \qquad
Account Project Manager: Whom spoken to: ADDITIONAL NOTES:	have they been notified of the above issues: Yes No Date and Time:

Document #: SR-186-9504.001 Revision Date: July 9, 2014

Page 1 of 1

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) 219-800 BURRARD ST VANCOUVER, BC V6Z 0B9 604-671-1831 ATTENTION TO: Robyn Chatwin-Davies PROJECT: 21455123 AGAT WORK ORDER: 21V825326 SOIL ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter DATE REPORTED: Nov 17, 2021 PAGES (INCLUDING COVER): 20 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*Notes

VERSION 2:Version 1 issued on November 10, 2021 to report TOC and Metals. Particle Size by Sieve, Texture, and Speciated Chromium results to follow.

Version 2 issued on November 17, 2021 to report Particle Size by Sieve and Texture. Speciated Chromium results to follow.

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Nember of: Association of Professional Engineers and Geoscientists of Alberta
(APEGA)
Western Enviro-Agricultural Laboratory Association (WEALA)
Environmental Services Association of Alberta (ESAA)

Page 1 of 20

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY: Metals in Soil - Public Works (µq/q)

DATE RECEIVED: 2021-11-02	2		DATE REPORTED: 2021-11-17									
		SAMPLE DESCRIPTION:	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08		
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SAMPLED:	: 2021-10-26 13:00	2021-10-26 14:30	2021-10-26 15:00	2021-10-26 15:40	2021-10-27 09:15	2021-10-27 09:15	2021-10-27 09:50	2021-10-27 10:20		
Parameter	Unit	G/S RDL	3165240	3165241	3165242	3165243	3165244	3165245	3165246	3165247		
Aluminum	µg/g	10	21500	22700	20400	18800	17800	18700	18500	20500		
Antimony	µg/g	0.1	0.5	0.3	0.4	0.5	0.4	0.4	0.3	0.4		
Arsenic	µg/g	1	4	5	5	5	5	5	4	5		
Barium	hð/ð	0.5	129	109	99.7	103	103	110	87.5	108		
Beryllium	µg/g	0.1	0.4	0.5	0.4	0.4	0.4	0.4	0.3	0.4		
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Cadmium	µg/g	0.01	1.08	1.18	9.63	9.89	2.83	3.20	0.31	9.59		
Calcium	µg/g	10	6370	8670	8190	7420	7060	7240	6660	7560		
Chromium	µg/g	1	39	44	78	78	45	52	30	67		
Cobalt	µg/g	0.1	12.8	13.9	12.5	13.4	11.5	12.9	10.2	13.1		
Copper	µg/g	0.2	21.7	35.9	36.8	36.9	30.2	33.8	17.0	36.3		
Iron	µg/g	10	27400	31500	27400	27000	23800	25000	24400	27200		
Lead	µg/g	0.1	14.3	10.6	26.2	32.2	25.1	26.7	10.9	28.7		
Magnesium	µg/g	10	6220	7580	6990	6230	5450	5690	6280	6540		
Manganese	µg/g	1	909	630	574	825	588	627	688	866		
Mercury	µg/g	0.01	0.02	0.04	0.03	0.04	0.05	0.05	0.03	0.04		
Molybdenum	µg/g	0.2	1.2	0.4	0.7	0.8	0.6	0.7	0.4	0.6		
Nickel	µg/g	0.5	25.2	32.7	24.7	27.0	22.9	26.7	22.8	27.4		
Phosphorus	µg/g	5	650	733	1290	1080	814	879	681	1020		
Potassium	µg/g	5	771	1350	834	747	715	729	636	920		
Selenium	µg/g	0.1	0.1	0.4	0.4	0.5	0.5	0.5	0.4	0.6		
Lithium	µg/g	0.5	14.9	17.2	13.6	14.1	12.8	14.0	13.1	14.6		
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Sodium	µg/g	5	214	241	222	267	233	244	163	307		
Strontium	µg/g	1	37	53	47	45	46	47	44	46		
Thallium	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Tin	hð/ð	0.2	0.6	0.5	1.0	1.5	1.0	1.4	0.4	1.3		
Titanium	µg/g	1	1060	1050	838	776	707	751	1060	919		
Uranium	na/a	0.2	0.5	0.5	0.9	0.8	0.7	0.7	0.3	0.9		

Certified By:

. Solari

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-11-02		DATE REPORTE								ED: 2021-11-17	
		SAMPLE DES	CRIPTION:	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08
		SAMPLE TYPE: DATE SAMPLED:		Soil 2021-10-26 13:00	Soil 2021-10-26 14:30	Soil 2021-10-26 15:00	Soil 2021-10-26 15:40	Soil 2021-10-27 09:15	Soil 2021-10-27 09:15	Soil 2021-10-27 09:50	Soil 2021-10-27 10:20
Parameter	Unit	G / S	RDL	3165240	3165241	3165242	3165243	3165244	3165245	3165246	3165247
Vanadium	µg/g		1	70	87	68	66	64	74	69	67
Zinc	µg/g		1	107	99	132	179	103	118	81	179
Zirconium	µg/g		0.1	0.7	1.1	0.4	0.4	0.4	0.5	0.8	0.7
рН 1:2	pH units		0.10	5.40	5.99	5.47	5.70	5.18	5.16	5.47	5.85

Metals in Soil - Public Works (ug/g)

). Solaria

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

			Metals i	n Soil - Pub	lic Works (µ	Jg/g)						
DATE RECEIVED: 2021-11-02 DATE REPORTED: 2021-11-17												
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	06190-09 Soil 2021-10-27 11:30	06190-10 Soil 2021-10-27 13:00	06190-11 Soil 2021-10-27 14:30	06190-12 Soil 2021-10-27 15:15	06191-01 Soil 2021-10-28 10:00	06191-02 Soil 2021-10-28 10:45	06191-03 Soil 2021-10-28	06191-04 Soil 2021-10-28		
Parameter	Unit	G/S RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255		
Aluminum	µg/g	10	22800	20200	21900	23600	22000	23600	28700	25100		
Antimony	µg/g	0.1	0.5	0.3	0.3	0.5	0.4	0.7	0.9	0.4		
Arsenic	µg/g	1	5	3	4	6	5	4	6	4		
Barium	µg/g	0.5	122	102	98.8	125	105	103	148	139		
Beryllium	µg/g	0.1	0.5	0.4	0.4	0.5	0.4	0.4	0.6	0.5		
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Cadmium	µg/g	0.01	4.15	0.23	1.08	6.34	0.41	0.98	10.6	3.13		
Calcium	µg/g	10	7700	5670	6470	8890	8230	8010	8910	9000		
Chromium	µg/g	1	53	34	36	64	37	46	92	52		
Cobalt	µg/g	0.1	14.6	11.8	11.3	14.3	15.1	12.7	17.8	12.5		
Copper	µg/g	0.2	40.6	29.3	26.4	43.9	26.1	42.4	63.8	31.1		
Iron	µg/g	10	29200	26500	28100	31400	29400	29400	34400	29000		
Lead	µg/g	0.1	25.9	11.9	16.0	32.8	47.5	84.8	55.0	31.6		
Magnesium	µg/g	10	6560	6180	6490	7230	7470	8780	8600	7870		
Manganese	µg/g	1	1160	633	638	1140	775	446	1240	676		
Mercury	µg/g	0.01	0.07	<0.01	0.01	0.05	0.04	0.04	0.08	0.06		
Molybdenum	µg/g	0.2	1.0	0.4	0.5	1.0	0.4	0.7	1.3	0.6		
Nickel	µg/g	0.5	29.8	27.6	24.2	31.2	27.7	30.5	39.1	29.1		
Phosphorus	µg/g	5	987	660	577	940	428	544	1260	696		
Potassium	µg/g	5	909	894	1000	832	832	786	1220	949		
Selenium	µg/g	0.1	0.6	0.2	0.4	0.7	0.4	0.5	0.7	0.4		
Lithium	µg/g	0.5	16.9	14.1	14.3	16.7	15.7	16.5	21.0	16.2		
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5		
Sodium	µg/g	5	298	211	186	311	319	618	408	336		
Strontium	µg/g	1	52	34	37	56	52	45	55	59		
Thallium	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Tin	µg/g	0.2	1.1	0.7	0.8	1.1	0.6	1.2	1.8	1.0		
Titanium	µg/g	1	858	884	913	833	1170	1050	989	1030		
Uranium	µa/a	0.2	1.0	0.5	0.6	0.9	0.4	0.5	1.4	0.7		

Certified By:

. Solari

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

				motorom			-9,9/				
DATE RECEIVED: 2021-11-02								I	DATE REPORT	ED: 2021-11-17	
		SAMPLE DES	CRIPTION:	06190-09	06190-10	06190-11	06190-12	06191-01	06191-02	06191-03	06191-04
		SAM	IPLE TYPE:	Soil							
		DATE	SAMPLED:	2021-10-27 11:30	2021-10-27 13:00	2021-10-27 14:30	2021-10-27 15:15	2021-10-28 10:00	2021-10-28 10:45	2021-10-28 11:30	2021-10-28 12:00
Parameter	Unit	G / S	RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255
Vanadium	µg/g		1	75	72	69	74	80	77	87	70
Zinc	µg/g		1	179	85	96	228	76	167	365	115
Zirconium	µg/g		0.1	0.4	0.5	0.6	0.5	1.3	1.7	0.6	0.7
pH 1:2	pH units		0.10	5.64	5.57	5.68	5.76	5.52	4.57	5.79	5.41

Metals in Soil - Public Works (ug/g)

). Solaria

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Metals in Soil - Public Works (µg/g)													
DATE RECEIVED: 2021-11-02							l	DATE REPORTED	D: 2021-11-17				
		SAMPLE DESCRIPTION:	06191-05	06191-06	06191-07	06191-08	06191-09	06191-10					
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil					
		DATE SAMPLED:	2021-10-28	2021-10-29	2021-10-29	2021-10-29	2021-10-29	2021-10-29					
Parameter	Unit	G/S RDL	3165256	3165257	3165258	3165259	3165260	3165261					
Aluminum	µg/g	10	25100	20400	26100	27500	21700	23100					
Antimony	µg/g	0.1	0.8	0.5	0.9	0.8	0.5	0.3					
Arsenic	µg/g	1	6	6	8	7	4	3					
Barium	µg/g	0.5	134	122	166	158	118	116					
Beryllium	µg/g	0.1	0.5	0.4	0.6	0.5	0.4	0.6					
Bismuth	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					
Cadmium	µg/g	0.01	13.2	9.23	14.8	13.9	1.01	0.43					
Calcium	µg/g	10	7710	7330	9900	11100	7950	4210					
Chromium	µg/g	1	80	80	100	91	37	48					
Cobalt	µg/g	0.1	14.5	13.9	19.9	17.9	14.5	17.8					
Copper	µg/g	0.2	49.2	41.6	65.4	59.7	28.4	20.1					
Iron	µg/g	10	31800	26900	34900	38500	27700	27900					
Lead	µg/g	0.1	42.9	37.4	62.7	58.1	38.0	28.1					
Magnesium	µg/g	10	7570	6430	7880	8490	6440	6810					
Manganese	µg/g	1	1080	1010	1930	1870	961	665					
Mercury	µg/g	0.01	0.07	0.06	0.10	0.07	0.06	0.02					
Molybdenum	µg/g	0.2	1.1	0.8	1.3	1.3	0.7	0.5					
Nickel	µg/g	0.5	31.6	29.0	41.4	36.9	25.0	32.6					
Phosphorus	µg/g	5	1320	960	1540	1740	655	358					
Potassium	µg/g	5	822	826	1100	1170	708	576					
Selenium	µg/g	0.1	0.8	0.5	0.7	0.7	0.5	0.4					
Lithium	µg/g	0.5	17.9	16.0	22.1	20.3	14.3	21.7					
Silver	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					
Sodium	µg/g	5	323	341	389	417	456	231					
Strontium	µg/g	1	49	55	76	73	59	46					
Thallium	µg/g	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1					
Tin	µg/g	0.2	1.6	1.6	1.7	1.6	0.8	0.8					
Titanium	µg/g	1	912	832	1070	1150	773	1080					
Uranium	µq/q	0.2	1.0	0.9	1.4	1.3	0.6	0.4					

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

							0.07			
DATE RECEIVED: 2021-11-02								I	DATE REPORTED	: 2021-11-17
		SAMPLE DES	CRIPTION:	06191-05	06191-06	06191-07	06191-08	06191-09	06191-10	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2021-10-28 13:25	2021-10-29 09:30	2021-10-29 10:30	2021-10-29 10:30	2021-10-29 11:00	2021-10-29 11:20	
Parameter	Unit	G/S	RDL	3165256	3165257	3165258	3165259	3165260	3165261	
Vanadium	µg/g		1	77	73	90	85	68	100	
Zinc	µg/g		1	255	200	464	418	181	100	
Zirconium	µg/g		0.1	0.5	0.8	1.8	1.5	0.9	1.1	
pH 1:2	pH units		0.10	4.73	5.70	6.19	9.27	5.45	4.95	

Metals in Soil - Public Works (ug/g)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3165240-3165261 Results are based on the dry weight of the sample

Analysis performed at AGAT Vancouver (unless marked by *)

). Solari

AGAT WORK ORDER: 21V825326 PROJECT: 21455123

Particla Siza by SIEV/E

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

				Г							
DATE RECEIVED: 2021-11-02								I	DATE REPORT	ED: 2021-11-17	
		SAMPLE DESCRIP	TION:	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08
		SAMPLE	TYPE:	Soil							
		DATE SAM	PLED:	2021-10-26 13:00	2021-10-26 14:30	2021-10-26 15:00	2021-10-26 15:40	2021-10-27 09:15	2021-10-27 09:15	2021-10-27 09:50	2021-10-27 10:20
Parameter	Unit	G/S R	RDL	3165240	3165241	3165242	3165243	3165244	3165245	3165246	3165247
Sieve Analysis - 19 mm	%		1	<1	<1	10	<1	<1	<1	<1	<1
Sieve Analysis - 4.75 mm	%		1	8	4	34	<1	<1	<1	4	<1
Sieve Analysis - 75 microns	%		1	25	23	19	35	32	37	32	32
Sieve Texture				Fine							
		SAMPLE DESCRIP	TION:	06190-09	06190-10	06190-11	06190-12	06191-01	06191-02	06191-03	06191-04
		SAMPLE	TYPE:	Soil							
		DATE SAM	PLED:	2021-10-27 11:30	2021-10-27 13:00	2021-10-27 14:30	2021-10-27 15:15	2021-10-28 10:00	2021-10-28 10:45	2021-10-28 11:30	2021-10-28 12:00
Parameter	Unit	G/S R	RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255
Sieve Analysis - 19 mm	%		1	<1	7	5	<1	<1	<1	<1	<1
Sieve Analysis - 4.75 mm	%		1	<1	12	15	<1	<1	<1	<1	1
Sieve Analysis - 75 microns	%		1	20	32	26	10	10	16	1	9
Sieve Texture				Fine							
		SAMPLE DESCRIP	TION:	06191-05	06191-06	06191-07	06191-08	06191-09	06191-10		
		SAMPLE	TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SAM	PLED:	2021-10-28 13:25	2021-10-29 09:30	2021-10-29 10:30	2021-10-29 10:30	2021-10-29 11:00	2021-10-29 11:20		
Parameter	Unit	G/S R	RDL	3165256	3165257	3165258	3165259	3165260	3165261		
Sieve Analysis - 19 mm	%		1	<1	<1	<1	<1	11	<1		
Sieve Analysis - 4.75 mm	%		1	<1	<1	<1	<1	3	<1		
Sieve Analysis - 75 microns	%		1	8	23	3	1	8	23		
Sieve Texture				Fine	Fine	Fine	Fine	Fine	Fine		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3165240-3165261 Value reported is amount of sample retained on sieve after wash with water and represents proportion by weight particles larger than indicated sieve size. Sieve Texture is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Calgary (unless marked by *)

. Solari

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

				0011711101	y515 110Au		mum				
DATE RECEIVED: 2021-11-02								I	DATE REPORT	ED: 2021-11-17	
		SAMPLE DES	CRIPTION:	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08
		SAM	IPLE TYPE:	Soil							
		DATE	SAMPLED:	2021-10-26 13:00	2021-10-26 14:30	2021-10-26 15:00	2021-10-26 15:40	2021-10-27 09:15	2021-10-27 09:15	2021-10-27 09:50	2021-10-27 10:20
Parameter	Unit	G / S	RDL	3165240	3165241	3165242	3165243	3165244	3165245	3165246	3165247
Chromium, Hexavalent	mg/L		0.3	DARK							
		SAMPLE DES	CRIPTION:	06190-09	06190-10	06190-11	06190-12	06191-01	06191-02	06191-03	06191-04
		SAM	IPLE TYPE:	Soil							
		DATE	SAMPLED:	2021-10-27 11:30	2021-10-27 13:00	2021-10-27 14:30	2021-10-27 15:15	2021-10-28 10:00	2021-10-28 10:45	2021-10-28 11:30	2021-10-28 12:00
Parameter	Unit	G / S	RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255
Chromium, Hexavalent	mg/L		0.3	DARK							
		SAMPLE DES	CRIPTION:	06191-05	06191-06	06191-07	06191-08	06191-09	06191-10		
		SAM	IPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE	SAMPLED:	2021-10-28 13:25	2021-10-29 09:30	2021-10-29 10:30	2021-10-29 10:30	2021-10-29 11:00	2021-10-29 11:20		
Parameter	Unit	G / S	RDL	3165256	3165257	3165258	3165259	3165260	3165261		
Chromium, Hexavalent	mg/L		0.3	DARK	DARK	DARK	DARK	DARK	DARK		

Soil Analysis - Hevavalent Chromium

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3165240-3165261 Result is based on the dry weight of the sample.

Analysis performed at AGAT Calgary (unless marked by *)

). Solari

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Soil Analysis - Texture (Gravel, Sand, Silt, Clay) (100 %)

DATE RECEIVED: 2021-11-02								[DATE REPORTE	ED: 2021-11-17	
		SAMPLE DESCR	RIPTION:	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08
		SAMPL	E TYPE:	Soil							
		DATE SA	MPLED:	2021-10-26	2021-10-26	2021-10-26	2021-10-26	2021-10-27	2021-10-27	2021-10-27	2021-10-27
				13:00	14:30	15:00	15:40	09:15	09:15	09:50	10:20
Parameter	Unit	G/S	RDL	3165240	3165241	3165242	3165243	3165244	3165245	3165246	3165247
Clay	%		1	20	22	13	21	19	16	17	17
Gravel	%		1	3	3	14	<1	2	<1	<1	<1
Sand	%		1	36	36	52	41	42	42	47	41
Silt	%		1	41	39	21	38	37	42	36	42
Soil Texture				Loam	Loam	Sandy Loam	Loam	Loam	Loam	Loam	Loam
		SAMPLE DESCR	RIPTION:	06190-09	06190-10	06190-11	06190-12	06191-01	06191-02	06191-03	06191-04
		SAMPL	E TYPE:	Soil							
		DATE SA	MPLED:	2021-10-27 11:30	2021-10-27 13:00	2021-10-27 14:30	2021-10-27 15:15	2021-10-28 10:00	2021-10-28 10:45	2021-10-28 11:30	2021-10-28 12:00
Parameter	Unit	G/S	RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255
Clay	%		1	25	22	24	21	24	11	27	15
Gravel	%		1	<1	4	5	<1	<1	<1	<1	<1
Sand	%		1	29	41	37	27	26	39	17	31
Silt	%		1	46	33	34	52	50	50	56	54
Soil Texture				Loam	Loam	Loam	Silt Loam	Loam	Loam	Silt Clay Loam	Silt Loam
		SAMPLE DESCR	RIPTION:	06191-05	06191-06	06191-07	06191-08	06191-09	06191-10		
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE SA	MPLED:	2021-10-28 13:25	2021-10-29 09:30	2021-10-29 10:30	2021-10-29 10:30	2021-10-29 11:00	2021-10-29 11:20		
Parameter	Unit	G / S	RDL	3165256	3165257	3165258	3165259	3165260	3165261		
Clay	%		1	19	15	19	20	27	15		
Gravel	%		1	<1	<1	<1	<1	1	<1		
Sand	%		1	25	37	28	25	25	42		
Silt	%		1	56	48	53	55	48	44		
Soil Texture				Silt Loam	Loam	Silt Loam	Silt Loam	Clay Loam	Loam		

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 086 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

DATE REPORTED: 2021-11-17

SAMPLED BY:

Soil Analysis - Texture (Gravel, Sand, Silt, Clay) (100 %)

DATE RECEIVED: 2021-11-02

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3165240-3165261 Soil Texture is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited. Analysis performed at AGAT Calgary (unless marked by *)

). Salari

Certified By:

AGAT WORK ORDER: 21V825326 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Total Organic Carbon in Soil (LECO) (Calc) (%)

DATE RECEIVED: 2021-11-02							I	DATE REPORT	ED: 2021-11-17	
		SAMPLE DESCRIPTION	: 06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06190-08
		SAMPLE TYPE	: Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Parameter	Unit	DATE SAMPLED	: 2021-10-26 13:00 3165240	2021-10-26 14:30 3165241	2021-10-26 15:00 3165242	2021-10-26 15:40 3165243	2021-10-27 09:15 3165244	2021-10-27 09:15 3165245	2021-10-27 09:50 3165246	2021-10-27 10:20 3165247
Carbon - Total	%	0.02	4.78	5.26	4.89	4.29	7.28	6.16	6.34	4.05
Inorganic Carbon - Total	%	0.02	0.06	0.06	0.06	0.05	0.08	0.10	0.04	0.05
Organic Carbon-Total (Calc)	%	0.02	4.72	5.20	4.83	4.24	7.20	6.06	6.30	4.00
		SAMPLE DESCRIPTION SAMPLE TYPE DATE SAMPLED	: 06190-09 : Soil : 2021-10-27 11:30	06190-10 Soil 2021-10-27 13:00	06190-11 Soil 2021-10-27 14:30	06190-12 Soil 2021-10-27 15:15	06191-01 Soil 2021-10-28 10:00	06191-02 Soil 2021-10-28 10:45	06191-03 Soil 2021-10-28 11:30	06191-04 Soil 2021-10-28 12 [.] 00
Parameter	Unit	G/S RDL	3165248	3165249	3165250	3165251	3165252	3165253	3165254	3165255
Carbon - Total	%	0.02	5.71	3.55	3.38	5.99	7.89	9.90	6.15	9.15
Inorganic Carbon - Total	%	0.02	0.04	<0.02	<0.02	0.06	0.05	0.19	0.04	0.06
Organic Carbon-Total (Calc)	%	0.02	5.67	3.55	3.38	5.93	7.84	9.71	6.11	9.09
		SAMPLE DESCRIPTION SAMPLE TYPE DATE SAMPLED	: 06191-05 : Soil : 2021-10-28 13:25	06191-06 Soil 2021-10-29 09:30	06191-07 Soil 2021-10-29 10:30	06191-08 Soil 2021-10-29 10:30	06191-09 Soil 2021-10-29 11:00	06191-10 Soil 2021-10-29 11:20		
Parameter	Unit	G/S RDL	3165256	3165257	3165258	3165259	3165260	3165261		
Carbon - Total	%	0.02	6.96	4.98	7.40	7.54	11.2	3.62		
Inorganic Carbon - Total	%	0.02	0.07	0.04	0.09	0.08	0.10	<0.02		
Organic Carbon-Total (Calc)	%	0.02	6.89	4.94	7.31	7.46	11.1	3.62		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Vancouver (unless marked by *)

). Solari

Certified By:

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V825326

PROJECT: 21455123

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Soil Analysis

						, , , , , , , , , , , , , , , , , , ,									
RPT Date: Nov 17, 2021	RPT Date: Nov 17, 2021			UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lin	ptable nits
		Ia					value	Lower	Upper		Lower	Upper	,	Lower	Upper
Total Organic Carbon in Soil (LEC	O) (Calc) (%)													
Carbon - Total	3165240		4.78	4.73	1.1%	< 0.02	96%	90%	110%						
Inorganic Carbon - Total	3165240		0.06	0.06	NA	< 0.02	82%	80%	120%						

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Metals in Soil - Public V	Vorks (µg/g)										
Aluminum	3175260	17500	18100	3.6%	< 10	103%	70%	130%	103%	85%	115%
Antimony	3171397	0.2	0.2	NA	< 0.1	106%	70%	130%	106%	85%	115%
Arsenic	3171397	5	5	0.0%	< 1	93%	70%	130%	98%	85%	115%
Barium	3171397	81.7	80.5	1.5%	< 0.5	103%	70%	130%	113%	85%	115%
Beryllium	3171397	0.4	0.4	NA	< 0.1	108%	70%	130%	109%	85%	115%
Bismuth	3171397	<0.5	<0.5	NA	< 0.5				100%	85%	115%
Cadmium	3171397	0.14	0.13	5.5%	< 0.01	105%	70%	130%	109%	85%	115%
Calcium	3175260	5460	5670	3.8%	< 10	108%	70%	130%	101%	85%	115%
Chromium	3171397	48	44	6.8%	< 1	108%	70%	130%	108%	85%	115%
Cobalt	3171397	13.3	12.6	5.2%	< 0.1	105%	70%	130%	115%	85%	115%
Copper	3171397	33.9	32.8	3.1%	< 0.2	101%	70%	130%	111%	85%	115%
Iron	3175260	23900	24700	3.4%	< 10	112%	70%	130%	103%	85%	115%
Lead	3171397	4.5	4.2	5.1%	< 0.1	103%	70%	130%	110%	85%	115%
Magnesium	3175260	5390	5510	2.2%	< 10	116%	70%	130%	100%	85%	115%
Manganese	3171397	353	345	2.2%	< 1	104%	70%	130%	112%	85%	115%
Mercury	3171397	0.02	0.01	NA	< 0.01	116%	70%	130%	105%	85%	115%
Molybdenum	3171397	0.4	0.4	NA	< 0.2	94%	70%	130%	104%	85%	115%
Nickel	3171397	31.3	29.8	4.7%	< 0.5	99%	70%	130%	105%	85%	115%
Phosphorus	3175260	436	452	3.5%	< 5	118%	70%	130%	92%	85%	115%
Potassium	3175260	682	740	8.1%	< 5	96%	70%	130%	93%	85%	115%
Selenium	3171397	0.3	0.6	NA	< 0.1				110%	85%	115%
Lithium	3171397	18.2	18.3	0.6%	< 0.5				104%	85%	115%
Silver	3171397	<0.5	<0.5	NA	< 0.5	106%	70%	130%	107%	85%	115%
Sodium	3175260	304	311	2.3%	< 5	80%	70%	130%	98%	85%	115%
Strontium	3171397	35	34	2.2%	< 1	98%	70%	130%	101%	85%	115%
Thallium	3171397	<0.1	<0.1	NA	< 0.1	102%	70%	130%	108%	85%	115%
Tin	3171397	0.5	0.5	NA	< 0.2	103%	70%	130%	97%	85%	115%
Titanium	3175260	736	824	11.3%	< 1	112%	70%	130%	99%	85%	115%
Uranium	3171397	0.5	0.5	NA	< 0.2	112%	70%	130%	108%	85%	110%
Vanadium	3171397	110	104	6.4%	< 1	104%	70%	130%	109%	85%	115%
Zinc	3171397	47	41	13.7%	< 1	97%	70%	130%	102%	85%	115%
Zirconium	3171397	4.1	3.7	9.6%	< 0.1				99%	85%	115%
pH 1:2	3175260	7.60	7.63	0.4%		103%	90%	110%	99%	95%	105%

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 13 of 20

Page 14 of 20

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V825326

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Soil Analysis (Continued)

RPT Date: Nov 17, 2021	RPT Date: Nov 17, 2021			UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
Id Id		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Metals in Soil - Public Works (µg/g)

Aluminum	3175501	29600	25800	13.7%	< 10	105%	70%	130%	102%	85%	115%
Antimony	3175501	0.3	0.3	NA	< 0.1	101%	70%	130%	109%	85%	115%
Arsenic	3175501	7	7	0.0%	< 1	94%	70%	130%	106%	85%	115%
Barium	3175501	86.4	84.3	2.5%	< 0.5	108%	70%	130%	114%	85%	115%
Beryllium	3175501	0.5	0.5	1.7%	< 0.1	114%	70%	130%	112%	85%	115%
Bismuth	3175501	<0.5	<0.5	NA	< 0.5				100%	85%	115%
Cadmium	3175501	0.24	0.22	5.9%	< 0.01	106%	70%	130%	110%	85%	115%
Calcium	3175501	12900	11600	10.6%	< 10	112%	70%	130%	100%	85%	115%
Chromium	3175501	53	53	0.6%	< 1	108%	70%	130%	114%	85%	115%
Cobalt	3175501	19.0	18.8	0.9%	< 0.1	105%	70%	130%	113%	85%	115%
Copper	3175501	62.3	61.1	1.9%	< 0.2	98%	70%	130%	110%	85%	115%
Iron	3175501	43100	38000	12.7%	< 10	111%	70%	130%	104%	85%	115%
Lead	3175501	5.7	5.6	2.7%	< 0.1	113%	70%	130%	108%	85%	115%
Magnesium	3175501	15000	13200	12.9%	< 10	111%	70%	130%	99%	85%	115%
Manganese	3175501	660	647	2.0%	< 1	106%	70%	130%	111%	85%	115%
Mercury	3175501	0.03	0.03	NA	< 0.01	113%	70%	130%	99%	85%	115%
Molybdenum	3175501	0.4	0.3	NA	< 0.2	101%	70%	130%	105%	85%	115%
Nickel	3175501	47.6	47.1	1.1%	< 0.5	96%	70%	130%	113%	85%	115%
Phosphorus	3175501	637	478	28.4%	< 5	123%	70%	130%	94%	85%	115%
Potassium	3175501	1970	1600	20.9%	< 5	105%	70%	130%	92%	85%	115%
Selenium	3175501	0.3	0.5	NA	< 0.1				115%	85%	115%
Lithium	3175501	27.4	27.3	0.2%	< 0.5				103%	85%	115%
Silver	3175501	<0.5	<0.5	NA	< 0.5	106%	70%	130%	110%	85%	115%
Sodium	3175501	1010	753	29.6%	< 5	105%	70%	130%	96%	85%	115%
Strontium	3175501	62	60	2.2%	< 1	107%	70%	130%	101%	85%	115%
Thallium	3175501	<0.1	<0.1	NA	< 0.1	103%	70%	130%	106%	85%	115%
Tin	3175501	0.5	0.5	NA	< 0.2	116%	70%	130%	100%	85%	115%
Titanium	3175501	1760	1480	17.2%	< 1	117%	70%	130%	99%	85%	115%
Uranium	3175501	0.5	0.5	NA	< 0.2	115%	70%	130%	103%	85%	110%
Vanadium	3175501	109	109	0.1%	< 1	106%	70%	130%	112%	85%	115%
Zinc	3175501	83	78	5.9%	< 1	90%	70%	130%	113%	85%	115%
Zirconium	3175501	7.0	6.7	4.7%	< 0.1				101%	85%	115%
pH 1:2	3175501	8.44	8.45	0.1%		103%	90%	110%	100%	95%	105%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Particle Size by SIEVE

 Sieve Analysis - 19 mm
 3165241
 <1</th>
 <1</th>
 NA
 < 1</th>

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V825326

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Soil Analysis (Continued)

RPT Date: Nov 17, 2021 DUPLICATE						REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Id					value	Lower	Upper		Lower	Upper]	Lower	Upper
Sieve Analysis - 4.75 mm	3165241		4	5	NA	< 1									
Sieve Analysis - 75 microns	3165241		23	24	4.3%	< 1		80%	120%						

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Particle Size by SIEVE						
Sieve Analysis - 19 mm	3165257	<1	<1	NA	< 1	
Sieve Analysis - 4.75 mm	3165257	<1	<1	NA	< 1	
Sieve Analysis - 75 microns	3165257	23	22	4.4%	< 1	80% 120%

Comments: Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

Salani

Page 15 of 20

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V825326

PROJECT: 21455123

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	· · ·		
Aluminum	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Bismuth	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Calcium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Iron	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Magnesium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Manganese	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Phosphorus	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Potassium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Lithium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Sodium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Strontium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP-MS
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V825326

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING	SITE
SAIVIF LING	JIL.

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Titanium	MET-181-6106, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6010C	ICP/OES
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
Zirconium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS
рН 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER
Sieve Analysis - 19 mm	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Sieve Analysis - 4.75 mm	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Sieve Analysis - 75 microns	SOIL 0540; SOIL 0110	KROETSCH 2007; SHEPPARD 2007	SIEVE
Chromium, Hexavalent	SOIL 0600	BARTLETT, R.J., JAMES, B.R. (1996) S	SPECTROPHOTOMETER
Carbon - Total	INOR-181-6027	ASTM E1915-11	LECO
Inorganic Carbon - Total	INOR-181-6027	Modified from ASTM E1915-11	COMBUSTION

			CU							VOI	0.0	501	EOT	21	182	532	5		
(A) Cald	law		CH		OF CL	15100	Y RE	COR	D/ANAL	YSI	SR	EQU	EST			Νο. Į	1913	JU page	ofZ
Gold	iates			Projec	ct Number:	2143	55123	,			Laboratory Name:								
200 – 2920 Virtual Way	144660			Short	Title:	ISET	CEL	e IA	Golder	Contac	ontact: Address:								
Vancouver, British Colum Telephone (604) 296-420	nbia, Canada)0 Fax (60	a V5M 0C	:4 253	Golde	er E-mail Ado	iress 1:		Golder	r E-mail Addre	ss 2:	Telephone/Fax: Contact:								
Office Name:				KCL	Naturin-T	Juis @go	lder.cor	n	AFast		@go	Ider.co	om 6	04.60	38	081	Ju	MELL YOU	20
Vac	Vactoria = EQuIS Facility Code: 229666564							Analyses Required											
Turnaround Time:	24 hr	E	 48 hr BC Water 	ater Quali	T2 hr] Other	R	Regular	(5 Days)	S							C		
Note: Final Reports to	o be issued l	by e-mail			Quote N	0.:	0.000			ntaine	Tabov Tabov						re		
			Comple	Camala	Dete	TOUSE	9422			of Co	26	J	2000				ect T⊅		
Sample Control S Number (SCN)	Sample	Sa. #	Depth	Matrix	Sampled	Sampled	Sample Type	Code	SCN	nber	2	0	ST.				H (Sel	Remark	s
	oouton	_	(m)	(over)	(D / M / Y)	(HH:MM)	(over)	(over)	(over)	NUN	CS	ty					RUS	(over)	
06190 - 01 es	521-01		0-0.1	fo	26/10/21	13:00	GRAE			4	X	XX	X					Cay of	Silt
06190 - 02 es	21-07				1	14:30				3	X	\times	$\langle \chi \rangle$	1.00	್ಷಾಣಗ			Eard To	gravel
06190 - 03 CS	521-03					15:00				3	X	XX	X					19mm (0.3	254)
06190 - 04 CS	21-04				V	15:40				3	X	\times	$\langle X $					4.75mm	
06190 - 05 CS	21-05				27/10/21	D9:15		FDA	06190-06	3	X	XX	X					(Sieve AD	4)
06190 - 06 cs	21-05					09:15		FD	06190-05	3	\times	XY	$\langle X $					75 mm	
06190 -01 es	21-06					09:50		1.3	1	3	\times	\times	$\langle X $					(Sieve no	200)
06190 - 08 es	21-09			_		10:20				3	X	\times	$\langle \times \rangle$						
06190 - 09 CS	21-08					11:30	_	(#)		3	X	$\left \right\rangle$							
06190 - 10 3	21-10					13:00				3	X	\times	X						
06190 - 11 CS	21-11					14:30				3.	X	\rangle							
06190-1205	21-17		Ú.	Ů.	1	15:15	J			3	X	(X)	$d \times d$						
Sampler's Signature:	-	-	Relinqui	shed by:	Signature	BK.	Compar	ny	Date	117	1	Time		Receive	d by: S	ignature	Co	mpany	
Comments:	ILE		Method	of Shipme	ent:		Waybill	Waybill No.: Received for La			Lab by:	by: Date Time							
Bill to PSP (C is		Shipped	by:			Shipmer Seal Int	nt Conditi act:	ion:		Tem	p (°C)	Cooler of	pened by:	Dat	e		Time	

WHITE: Golder Copy YELLOW: Lab Copy

C College	CHAIN	OF CUSTOD	Y RECOR	D/ANALYS	SIS RE	QUEST		No. ()	6191 pagez of Z
Associates	Proje	ect Number: ZIY<	5173			Labo	pratory Name		
200 – 2920 Virtual Way	Shor	rt Title:	0	Golder Cont	act:	Add	ess:	HUHI	
Vancouver, British Columbia, Canada V5M 00 Telephone (604) 296-4200 Eav (604) 208 5	C4 Gold	ler E-mail Address 1:	Golde	E-mail Address 2	hotwin-1	Davies	8600	Glenlyon	PKWY JAY
05	RC RC	Laterin-David@9	older.com	AFast	@golde	er.com	24 603	8081	Jannier Yoon
Victoria		EQuIS Facility EQuIS upload:	Code: <u>22961</u>	6564		Ar	alvses Reg	wired	2NOV 9:07AM
Turnaround Time: 24 hr Criteria: CSR CCME	48 hr	hr 72 hr Regular (5 Days)							
Note: Final Reports to be issued by e-mail		Quote No.:			5	222			povel 4
		TA: 700	589472	Conta	1 the	13 50			ТАТа
Sample Control Sample	Sample Sample	Date Time	Sample QAQC	Related	T	195			alect
Number (SCN) Location	(m) (over)	Sampled Sampled (D / M / Y) (HH:MM)	TypeCode(over)(over)	SCN quint (over) n	12 T	137 21			⊘ Remarks ∽ (over)
06191 - 01 CS2119	2 21 52	-21	1.00-	2	0	IT VI	_		₩ <u>₩</u>
6191 - 02 252 2-	0-0100	Corro 21 10.00	6il His	5	X	XX			- Chan dosil
		10:45		3	XX	XX			76 Sand To France
		11:30		3	XX	$ Y \rightarrow$			19.Mm (d.75")
05		12:00		3	XX	XX			4.75 mm
06161 - 06 252		13:25		3	XX	XX			(Sime NOV)
- 07		29/10/21 09:30		06191-08	$ X \times$	XN			7500
0619 0821-16		1 10:30	FOA	70-3	$\times \times$	XX			(Sieve no zoo)
06191-00 (521-16		10:30	FD	06121-07 3	XX	XX			
06191-09 521-12		11:00		3	XX	XX			
06191-10 621-18	Ú Ú	11:20	V	3	XX	XX			
- 11									
- 12									
Sampler's Signature:	Relinquished by:	Signature	Company	Date	Tir	ne	Received I	by: Signature	Company
Comments: ON ICE.	Method of Shipme	ent:	Waybill No.:		Received	for Lab by:	DAL	Date	Time
Binto PSPC.	Shipped by:	TCE	Shipment Condition	on:	Temp (°C	Cooler op	ened by:	Date	Time
+		WHITE	Goldor Come						
. •		WINE.	Copy Y	TELLOW: Lab (бору			-	ESED

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order #

SAMPLE QUANTITIES:	
Coolers: Containers:	
TIME SENSITIVE ISSUES: Earliest Date Sampled:	ALREADY EXCEEDED? Yes No
Non-Conformances:	
sample ID's) *use jars when available (1) $\underline{O} + \underline{O} + \underline{I} = \underline{I} \circ C(2) \underline{S} + \underline{S}$	e of each cooler: (record differing temperatures on the CoC next to $+5 = 5 \circ C(3) + 6 + 6 = 6 \circ C(4) + 6 + 6 = 6 \circ C$
Was ice or ice pack present: (Yes Integrity Issues:) No $(4^{\circ e})^{(5)}$ $3 - 3 - 2 = 3$
Account Project Manager:	have they been notified of the above issues: Yes No
Nhom spoken to:	Date and Time:
Whom spoken to:	Date and Time:
Nhom spoken to:	Date and Time:
Whom spoken to:	Date and Time:
Whom spoken to:	Date and Time:
Whom spoken to:	Date and Time:
Whom spoken to:	Date and Time:
Whom spoken to:ADDITIONAL NOTES:	Date and Time:
Whom spoken to:ADDITIONAL NOTES:	Date and Time:

Revision Date: July 9, 2014

Page 1 of 1

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) 219-800 BURRARD ST VANCOUVER, BC V6Z 0B9 604-671-1831 **ATTENTION TO: Robyn Chatwin-Davies** PROJECT: 21455123 AGAT WORK ORDER: 21V822430 WATER ANALYSIS REVIEWED BY: Clarissa Muljono, Report Writer DATE REPORTED: Nov 04, 2021 PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

26	
aimer	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21V822430 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

BC Schedule 6 Dissolved Mercury													
DATE RECEIVED: 2021-10-27								DATE REPORTED: 2021-11-04					
		SAMPLE DES	CRIPTION:	06183-01	06183-02	06183-03	06183-04						
		SAM	PLE TYPE:	Water	Water	Water	Water						
		DATES	SAMPLED:	2021-10-25	2021-10-25	2021-10-25	2021-10-26						
Parameter	Unit	G / S	RDL	3141728	3141731	3141732	3141733						
Dissolved Mercury	ug/L		0.005	<0.005	<0.005	<0.005	<0.005						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141728-3141733 < - Values refer to Method Detection Limit.

Analysis performed at AGAT Edmonton (unless marked by *)

AGAT WORK ORDER: 21V822430 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

	BC Schedule 6 Total Mercury													
DATE RECEIVED: 2021-10-27								DATE REPORTED: 2021-11-04						
		SAMPLE DES	CRIPTION:	06183-01	06183-02	06183-03	06183-04							
	SAMPLE TYPE:			Water	Water	Water	Water							
		DATE SAMPLED:		2021-10-25	2021-10-25	2021-10-25	2021-10-26							
Parameter	Unit	G / S	RDL	3141728	3141731	3141732	3141733							
Total Mercury	ug/L		0.005	<0.005	<0.005	<0.005	<0.005							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141728-3141733 < - Values refer to Report Detection Limits.

Analysis performed at AGAT Edmonton (unless marked by *)

AGAT WORK ORDER: 21V822430 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

			Γ	DOC in Wate	er (mg/L)	
						DATE REPORTED: 2021-11-04
	SAMPLE DES	CRIPTION:	06183-01	06183-02	06183-04	
	SAM	PLE TYPE:	Water	Water	Water	
	DATE S	SAMPLED:	2021-10-25	2021-10-25	2021-10-26	
Unit	G/S	RDL	3141728	3141731	3141733	
mg/L		0.5	5.1	5.2	5.5	
	Unit mg/L	SAMPLE DES SAMI DATE S Unit G / S mg/L	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL mg/L 0.5	SAMPLE DESCRIPTION: 06183-01 SAMPLE TYPE: Water DATE SAMPLED: 2021-10-25 Unit G / S RDL 3141728 mg/L 0.5 5.1	DOC in Wate SAMPLE DESCRIPTION: 06183-01 06183-02 SAMPLE TYPE: Water Water DATE SAMPLED: 2021-10-25 2021-10-25 Unit G / S RDL 3141728 3141731 mg/L 0.5 5.1 5.2	DOC in Water (mg/L) SAMPLE DESCRIPTION: 06183-01 06183-02 06183-04 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2021-10-25 2021-10-25 2021-10-26 Unit G / S RDL 3141728 3141731 3141733 mg/L 0.5 5.1 5.2 5.5

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Vancouver (unless marked by *)

Certified By:

AGAT WORK ORDER: 21V822430 PROJECT: 21455123

Dissolved Metals - Public Works (µg/L)

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-10-27 **DATE REPORTED: 2021-11-04** SAMPLE DESCRIPTION: 06183-01 06183-02 06183-03 06183-04 SAMPLE TYPE: Water Water Water Water DATE SAMPLED: 2021-10-25 2021-10-25 2021-10-25 2021-10-26 RDL 3141728 3141731 3141732 3141733 Parameter Unit G/S Aluminum Dissolved µg/L 2 12 7 6 10 Antimony Dissolved µg/L 0.2 2.2 1.0 0.5 0.5 Arsenic Dissolved µg/L 0.1 0.9 0.6 0.5 0.4 Barium Dissolved 0.2 8.8 7.8 8.4 5.6 µg/L Beryllium Dissolved µg/L 0.01 < 0.01 < 0.01 <0.01 < 0.01 **Bismuth Dissolved** µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Boron Dissolved µg/L 2 23 26 28 19 0.03 Cadmium Dissolved µg/L 0.01 < 0.01 < 0.01 0.01 Calcium Dissolved 50 27000 27800 27600 15400 µg/L Chromium Dissolved µg/L 0.5 <0.5 <0.5 <0.5 <0.5 Cobalt Dissolved µg/L 0.05 0.08 0.07 0.07 0.06 Copper Dissolved 2.5 2.9 µg/L 0.2 3.1 3.7 40 36 Iron Dissolved µg/L 10 13 55 µg/L 0.05 < 0.05 < 0.05 <0.05 0.07 Lead Dissolved Lithium Dissolved µg/L 0.5 0.8 0.9 1.0 0.6 Magnesium Dissolved µg/L 50 9490 9520 9460 5070 Manganese Dissolved µg/L 1 16 12 12 12 Molybdenum Dissolved µg/L 0.05 2.36 1.98 1.94 1.73 Nickel Dissolved µg/L 0.2 0.5 0.8 0.5 0.6 1470 Potassium Dissolved µg/L 50 1510 1480 1710 Selenium Dissolved µg/L 0.5 < 0.5 < 0.5 < 0.5 < 0.5 4630 2650 Silicon Dissolved µg/L 50 5060 4640 Silver Dissolved µg/L 0.02 < 0.02 < 0.02 <0.02 < 0.02 Sodium Dissolved µg/L 50 21800 23400 23800 14000 Strontium Dissolved µg/L 0.1 117 108 110 70.8 Sulphur Dissolved µg/L 500 8220 7570 7570 4750 Thallium Dissolved µg/L 0.01 0.01 < 0.01 < 0.01 < 0.01 Tin Dissolved µg/L 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Titanium Dissolved µg/L 0.5 2.7 3.2 3.0 2.3 0.22 0.17 0.19 Uranium Dissolved µq/L 0.01 0.08

Certified By:

AGAT WORK ORDER: 21V822430 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

(µ:9, _)											
DATE RECEIVED: 2021-10-27								DATE REPORTED: 2021-11-04			
	S	SAMPLE DES	CRIPTION:	06183-01	06183-02	06183-03	06183-04				
		SAM	PLE TYPE:	Water	Water	Water	Water				
		DATE	SAMPLED:	2021-10-25	2021-10-25	2021-10-25	2021-10-26				
Parameter	Unit	G/S	RDL	3141728	3141731	3141732	3141733				
Vanadium Dissolved	µg/L		0.5	0.5	0.7	0.5	0.5				
Zinc Dissolved	µg/L		2	9	5	6	7				
Zirconium Dissolved	µg/L		0.1	<0.1	<0.1	<0.1	<0.1				
Hardness (calc)	ug CaCO3/L		100	107000	109000	108000	59300				

Dissolved Metals - Public Works (ug/L)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Vancouver (unless marked by *)

AGAT WORK ORDER: 21V822430 PROJECT: 21455123

Total Metals - Public Works (µg/L)

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

DATE RECEIVED: 2021-10-27							DATE REPORTED: 2021-11-04
		SAMPLE DESCRIPTION:	06183-01	06183-02	06183-03	06183-04	
		SAMPLE TYPE:	Water	Water	Water	Water	
		DATE SAMPLED:	2021-10-25	2021-10-25	2021-10-25	2021-10-26	
Parameter	Unit	G / S RDL	3141728	3141731	3141732	3141733	
Aluminum Total	µg/L	5	82	83	94	214	
Antimony Total	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	
Arsenic Total	µg/L	0.1	0.2	0.4	<0.1	0.5	
Barium Total	µg/L	0.2	8.0	9.6	9.8	7.1	
Beryllium Total	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	
Bismuth Total	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	
Boron Total	µg/L	5	25	33	30	18	
Cadmium Total	µg/L	0.01	0.02	0.02	0.03	0.06	
Calcium Total	µg/L	50	29100	27900	27600	15800	
Chromium Total	µg/L	0.5	0.5	0.5	<0.5	0.7	
Cobalt Total	µg/L	0.05	0.09	0.12	0.12	0.18	
Copper Total	µg/L	0.5	4.6	5.2	4.5	5.6	
Iron Total	µg/L	10	122	175	169	348	
Lead Total	µg/L	0.05	0.08	0.19	0.12	0.42	
Lithium Total	µg/L	0.5	1.0	1.3	1.3	1.0	
Magnesium Total	µg/L	50	9830	10100	9610	5350	
Manganese Total	µg/L	1	25	16	15	21	
Molybdenum Total	µg/L	0.1	2.9	2.2	2.2	2.2	
Nickel Total	µg/L	0.5	0.8	0.8	0.7	1.0	
Potassium Total	µg/L	100	1460	1580	1510	1730	
Selenium Total	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	
Silicon Total	µg/L	50	5190	4950	4710	3170	
Silver Total	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	
Sodium Total	µg/L	100	21700	24200	22900	14300	
Strontium Total	µg/L	0.1	132	143	137	68.7	
Sulphur Total	µg/L	500	8100	7730	7410	4760	
Thallium Total	µg/L	0.02	<0.02	<0.02	<0.02	<0.02	
Tin Total	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	
Titanium Total	µg/L	0.5	6.2	7.2	6.8	11.8	
Uranium Total	µg/L	0.01	0.23	0.22	0.20	0.09	

Certified By:

AGAT WORK ORDER: 21V822430 PROJECT: 21455123

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

DATE REPORTED: 2021-11-04

SAMPLED BY:

DATE RECEIVED: 2021-10-27

	SA	MPLE DES	CRIPTION:	06183-01	06183-02	06183-03	06183-04
		SAM	PLE TYPE:	Water	Water	Water	Water
		DATES	SAMPLED:	2021-10-25	2021-10-25	2021-10-25	2021-10-26
Parameter	Unit	G/S	RDL	3141728	3141731	3141732	3141733
Vanadium Total	µg/L		1	1	1	1	2
Zinc Total	μg/L		5	11	9	9	11
Zirconium Total	μg/L		0.5	<0.5	<0.5	<0.5	<0.5
Total Hardness (calc)	ug CaCO3/L		100	113000	111000	108000	61500

Total Metals - Public Works (µg/L)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141728-3141733 Some total metal results are less than the dissolved metal results; results are within the precision of the method.

Analysis performed at AGAT Vancouver (unless marked by *)

AGAT WORK ORDER: 21V822430 PROJECT: 21455123 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

pH in Water											
DATE RECEIVED: 2021-10-27								DATE REPORTED: 2021-11-04			
		SAMPLE DES	CRIPTION:	06183-01	06183-02	06183-03	06183-04				
		SAM	IPLE TYPE:	Water	Water	Water	Water				
		DATE	SAMPLED:	2021-10-25	2021-10-25	2021-10-25	2021-10-26				
Parameter	Unit	G / S	RDL	3141728	3141731	3141732	3141733				
рН	pH units		0.01	7.52	7.58	7.57	7.33				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3141728-3141733 Literature holding time exceeded for pH analysis.

Analysis performed at AGAT Vancouver (unless marked by *)

Page 10 of 17

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Water Analysis

							-								
RPT Date: Nov 04, 2021			C	UPLICAT	E		REFERE		TERIAL	METHOD	BLANK		MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lii	eptable mits
							value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Metals - Public Works	s (µg/L)														
Aluminum Dissolved	3142220		35	40	13.3%	< 2	98%	70%	130%	86%	85%	115%			
Antimony Dissolved	3142220		787	738	6.4%	< 0.2	72%	70%	130%	99%	85%	115%			
Arsenic Dissolved	3142220		257	249	3.0%	< 0.1	96%	70%	130%	92%	85%	115%			
Barium Dissolved	3142220		53.2	55.3	3.8%	< 0.2	83%	70%	130%	102%	85%	115%			
Beryllium Dissolved	3142220		<0.01	<0.01	NA	< 0.01	89%	70%	130%	100%	85%	115%			
Bismuth Dissolved	3142220		<0.05	<0.05	NA	< 0.05				100%	85%	115%			
Boron Dissolved	3142220		5	5	NA	< 2	79%	70%	130%	104%	85%	115%			
Cadmium Dissolved	3142220		<0.01	<0.01	NA	< 0.01	88%	70%	130%	100%	85%	115%			
Calcium Dissolved	3142220		8790	8710	0.9%	< 50	101%	70%	130%	101%	85%	115%			
Chromium Dissolved	3142220		<0.5	<0.5	NA	< 0.5	89%	70%	130%	94%	85%	115%			
Cobalt Dissolved	3142220		1.48	1.40	5.6%	< 0.05	106%	70%	130%	100%	85%	115%			
Copper Dissolved	3142220		0.3	<0.2	NA	< 0.2	98%	70%	130%	96%	85%	115%			
Iron Dissolved	3142220		44	41	NA	< 10	104%	70%	130%	98%	85%	115%			
Lead Dissolved	3142220		0.07	0.06	NA	< 0.05	97%	70%	130%	106%	85%	115%			
Lithium Dissolved	3142220		0.5	0.6	NA	< 0.5				104%	85%	115%			
Magnesium Dissolved	3142220		1020	1010	1.1%	< 50	106%	70%	130%	103%	85%	115%			
Manganese Dissolved	3142220		<1	<1	NA	< 1	102%	70%	130%	96%	85%	115%			
Molybdenum Dissolved	3142220		9.03	9.74	7.6%	< 0.05	88%	70%	130%	106%	85%	115%			
Nickel Dissolved	3142220		<0.2	<0.2	NA	< 0.2	102%	70%	130%	100%	85%	115%			
Potassium Dissolved	3142220		1060	1030	3.6%	0.06	102%	70%	130%	99%	85%	115%			
Selenium Dissolved	3142220		4.4	4.1	8.2%	< 0.5	105%	70%	130%	100%	85%	115%			
Silicon Dissolved	3142220		1330	1290	3.4%	< 50				106%	85%	115%			
Silver Dissolved	3142220		<0.02	<0.02	NA	< 0.02				95%	85%	115%			
Sodium Dissolved	3142220		8020	8100	0.9%	< 50	99%	70%	130%	106%	85%	115%			
Strontium Dissolved	3142220		47.7	47.8	0.1%	< 0.1	86%	70%	130%	105%	85%	115%			
Sulphur Dissolved	3142220		5930	5810	2.0%	< 500				101%	85%	115%			
Thallium Dissolved	3142220		0.03	0.03	NA	< 0.01	85%	70%	130%	101%	85%	115%			
Tin Dissolved	3142220		<0.05	<0.05	NA	< 0.05				102%	85%	115%			
Titanium Dissolved	3142220		1.2	1.2	NA	< 0.5				100%	85%	115%			
Uranium Dissolved	3142220		0.58	0.55	4.3%	< 0.01	91%	70%	130%	103%	85%	115%			
Vanadium Dissolved	3142220		0.6	0.7	NA	< 0.5	89%	70%	130%	97%	85%	115%			
Zinc Dissolved	3142220		<2	<2	NA	< 2	83%	70%	130%	94%	85%	115%			
Zirconium Dissolved	3142220		0.1	0.1	NA	< 0.1				107%	85%	115%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Total Metals - Public Works (ug/L)										
Aluminum Total	3148795	89	103	14.6%	< 5	84%	70%	130%	96%	85%	115%
Antimony Total	3148795	<0.5	<0.5	NA	< 0.5	104%	70%	130%	101%	85%	115%
Arsenic Total	3148795	<0.1	<0.1	NA	< 0.1	105%	70%	130%	98%	85%	115%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 11 of 17

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

SAMPLING SITE:

ATTENTION TO: Robyn Chatwin-Davies

SAMPLED BY:

Water Analysis (Continued)

						•		,							
RPT Date: Nov 04, 2021			0	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable mits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lii	eptable mits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Uppe
Barium Total	3148795		0.5	1.0	NA	< 0.2	87%	70%	130%	101%	85%	115%			
Beryllium Total	3148795		<0.05	<0.05	NA	< 0.05	103%	70%	130%	103%	85%	115%			
Bismuth Total	3148795		<0.05	<0.05	NA	< 0.05				98%	85%	115%			
Boron Total	3148795		<5	<5	NA	< 5	116%	70%	130%	100%	85%	115%			
Cadmium Total	3148795		<0.01	0.01	NA	< 0.01	107%	70%	130%	100%	85%	115%			
Calcium Total	3148795		199	196	NA	< 50	103%	70%	130%	105%	85%	115%			
Chromium Total	3148795		<0.5	<0.5	NA	< 0.5	104%	70%	130%	101%	85%	115%			
Cobalt Total	3148795		0.16	0.18	NA	< 0.05	98%	70%	130%	101%	85%	115%			
Copper Total	3148795		1.4	3.4	NA	< 0.5	107%	70%	130%	105%	85%	115%			
Iron Total	3148795		79	77	2.1%	< 10	106%	70%	130%	101%	85%	115%			
Lead Total	3148795		0.13	0.17	NA	< 0.05	106%	70%	130%	105%	85%	115%			
Lithium Total	3148795		<0.5	<0.5	NA	< 0.5				102%	85%	115%			
Magnesium Total	3148795		178	179	NA	< 50	112%	70%	130%	109%	85%	115%			
Manganese Total	3148795		15	16	3.3%	< 1	103%	70%	130%	98%	85%	115%			
Molybdenum Total	3148795		<0.1	<0.1	NA	< 0.1	103%	70%	130%	102%	85%	115%			
Nickel Total	3148795		<0.5	1.6	NA	< 0.5	107%	70%	130%	103%	85%	115%			
Potassium Total	3148795		369	384	NA	< 100	100%	70%	130%	99%	85%	115%			
Selenium Total	3148795		<0.5	<0.5	NA	< 0.5	128%	70%	130%	100%	85%	115%			
Silicon Total	3148795		200	202	NA	< 50				108%	85%	115%			
Silver Total	3148795		<0.02	<0.02	NA	< 0.02				102%	85%	115%			
Sodium Total	3148795		577	593	2.7%	< 100	102%	70%	130%	108%	85%	115%			
Strontium Total	3148795		1.3	1.3	0.4%	< 0.1	103%	70%	130%	103%	85%	115%			
Sulphur Total	3148795		<500	<500	NA	< 500				99%	85%	115%			
Thallium Total	3148795		<0.02	<0.02	NA	< 0.02	122%	70%	130%	99%	85%	115%			
Tin Total	3148795		<0.05	0.07	NA	< 0.05				103%	85%	115%			
Titanium Total	3148795		5.0	5.9	16.9%	< 0.5				105%	85%	115%			
Uranium Total	3148795		<0.01	<0.01	NA	< 0.01	104%	70%	130%	103%	85%	115%			
Vanadium Total	3148795		1	1	NA	< 1	94%	70%	130%	105%	85%	115%			
Zinc Total	3148795		<5	<5	NA	< 5	94%	70%	130%	98%	85%	115%			
Zirconium Total	3148795		<0.5	<0.5	NA	< 0.5				106%	85%	115%			
Comments: RPDs are calculated	d using raw analy	tical data/	and not the	e rounded	duplicate	values rep	orted.								
pH in Water															
рH	3141728		7.52	7.52	0.0%		100%	95%	105%						

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

DOC in Water (mg/L)											
Carbon Dissolved Organic	3141728	5.1	5.0	1.6%	< 0.5	102%	85%	115%	105%	90%	110%

BC Schedule 6 Dissolved Mercury

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

ATTENTION TO: Robyn Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Water Analysis (Continued)

					-	-		-							
RPT Date: Nov 04, 2021			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Dissolved Mercury	307	TAP	<0.005	<0.005	NA	< 0.005	84%	70%	130%	85%	80%	120%	82%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

BC Schedule 6 Total Mercury														
Total Mercury	307	TAP	<0.005	<0.005	NA	<0.005	81%	70% 130%	88%	80%	120%	82%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

Certified By:

Page 12 of 17

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

SAMPLING SITE:		SAMPLED BY:	SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Water Analysis							
Dissolved Mercury		SM 3112 B	CV/AFS				
Total Mercury	INOR-171-6202	SM 3112 B	CV/AFS				
Carbon Dissolved Organic	INOR-181-6003	Modified from SM 5310 B	COMBUSTION				
Aluminum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Antimony Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Arsenic Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Barium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Beryllium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Bismuth Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Boron Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Cadmium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Calcium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Chromium Dissolved	ME1-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Cobalt Dissolved	ME1-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Copper Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Iron Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Lead Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Lithium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Magnesium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Manganese Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Molybdenum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Nickel Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Potassium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Selenium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Silicon Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Silver Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Sodium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				
Strontium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS				
Sulphur Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES				

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

SAMPLING SITE:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Thallium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Tin Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Titanium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Uranium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Vanadium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Zinc Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Zirconium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Aluminum Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Antimony Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Arsenic Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Barium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Beryllium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Bismuth Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Boron Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Cadmium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Calcium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES
Chromium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Cobalt Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Copper Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Iron Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES
Lead Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Lithium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Magnesium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES
Manganese Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES
Molybdenum Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Nickel Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS
Potassium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES
Selenium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V822430

PROJECT: 21455123

SAMPLING SITE:		SAMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Silicon Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES				
Silver Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Sodium Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES				
Strontium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Sulphur Total	MET-181-6101, LAB-181-4009	Modified from SM 3120 B	ICP/OES				
Thallium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Tin Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Titanium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Uranium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Vanadium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Zinc Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
Zirconium Total	MET-181-6102, LAB-181-4009	Modified from SM 3125 B	ICP-MS				
рН	INOR-181-6000	Modified from SM 4500-H+	PH METER				

	Idau		Cŀ		OF CL	JSTOD	Y RE	COR	D/ANAL	YS	IS I	REC	QUE	ST		2	I√ No	82 [.] D. 01	24 618	30 3 page L of L
Asso	lder			Proje	ct Number:	71455	123							Lab	oratory N	ame:	_	5	711	T 84.70M
200 – 2920 Virtual Wa	ly			Short	Title:				Golder	Conta	ct:			Add	ress:	A	68	۲. ···	1 Carbon	
Vancouver, British Col Telephone (604) 2964	lumbia, Cana	da V5M 00	C4	Golde	er E-mail Ado	dress 1:	Cie	Golde	r E-mail Addre	ACL ss 2	antu	in-D	nuie	Tele	\$600 Glunlyon PKWY BBY					
Office Nome:				RCh	aturin-De	wics @g	older.com	n A	Fast		@	jolder	.com	Contact:						
V:	Victoria, EQUIS Facility Code: 229666564																			
Turnaround Time: Criteria: CSR	24 hr	ME	□ 48 hr □ BC W	/ater Quali	ty 72 hr	Other	J 21.	Regular	(5 Days)	s	20			-	alyses	Xequite	30		()	
Note: Final Reports	s to be issued	d by e-mai	I		Quote No	7005	89.47-	7		ntaine	Sec	5/2	551		X				T abov	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of Co	SR Diss	SR Flot	Have chn-	HA	DOC				RUSH (Select TA	Remarks (over)
06183-01	SWZI- DI			SW	25/10/21		GRAK			6	X	X	\times	X	X		1		-	*Doc
06183-02	JUZI-0-	5		Su	1			FOA	06183-03	6	X	X	\times	X	X					all we have
06183-03	SW21-03	5		SW				TO	06183-02	5	X	X	X	X	~					LI & The LA
06183-04	WZ1-07	Į.		SW	26/10/21					6.	X	X	\times	X	X	_				Radius
- 05								-							~					DOMICS.
- 06																				VID- Gilland
- 07																				A-U- FILFGER
- 08													_							UN PUM CARD
- 09										_				_						DA OCT 26/02
- 10										_	-					_			-	
- 11																-				
- 12																				
Sampler's Signature:	Ø	Ē	Relinquis	shed by: S	Signature	SF-	Compan	dir	Date Z6/10	171		Time	e 6 ' 7	20	Receiv	ed by:	Signati	ure	Corr	pany
Comments: ON	ILE		Method of	of Shipmer	nt:		Waybill N	lo.:			Rec	eived f	for Lat	o by:		Da	ate			Time
Hall to BSD	P C Shipped by: Shipment Condition: Temp (°C) Seal Intact: 7						Co	ooler opened by: Date Time			Time									
WHITE: Golder Copy YELLOW: Lab Copy																				

Page 16 of 17

agat Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order	[,] #
RECEIVING BASICS: Received From: <u>Ace</u> <u>Courrer</u> SAMPLE QUANTITIES: Coolers: <u>/</u> Containers:	Waybill #:
Earliest Date Sampled:	ALREADY EXCEEDED? Yes No
Non-Conformances: 3 temperatures of samples* and average of ea sample ID's) *use jars when available	ach cooler: (record differing temperatures on the CoC next to
(1) $2 + 4 + 0 = 2 \circ c(2) + + +$	
Was ice or ice pack present: Yes No Integrity Issues:	
ccount Project Manager:	have they been notified of the above issues: Yes No
DDITIONAL NOTES:	Date and Time:

Document #: SR-186-9504.001 Revision Date: July 9, 2014

Page 1 of 1

Certificate of Analysis Concentrations of Freely Dissolved Analytes Measured via SPeeper[™] Passive Samplers

Customer: Golder

Site Deployment Dates:

SiREM Reference: Si-5280-082321

Report Issued:

October 25, 2021 to November 24, 2021

June 24, 2021

Introduction

This report represents the results from *in-situ* deployment of SPeeper[™] passive samplers in surface sediment from the Kelset Creek site in Victoria, BC the Site). The data from twelve (12) passive sampler sets (nine [9] deployed in sediment and three [3] trip blanks) were analyzed to determine the freely-dissolved concentrations (C_{free}) of dissolved metals¹ and hexavalent chromium in sediment porewater. The analysis of bromide (Br), a reverse tracer used to evaluate diffusion equilibrium was also measured in the samplers. A total of 9 SPeeper[™] sampler sets were deployed between October 25, 2021 and October 26, 2021 and were retrieved on November 24, 2021. Details of the data analysis procedure are provided in Attachment A.

Sample Summary

Client Sample ID	Sample Type	Sampler Deployment Date	Sampler Retrieval Date	Analysis		
06169-01	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		
06169-02	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		
06169-03	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		
06169-04	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		
06169-05	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		
06169-06	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide		

¹ Al, Ni, Cd, SB, Na, Be, Ba, Ca, Fe, V, Ag, Mg, Cu, Zn, Mn, Cr, Co, Mo, Sr, B

Client Sample ID	Sample Type	Sampler Deployment Date	Sampler Retrieval Date	Analysis
06169-07	Sample	10/26/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide
06169-08	Sample	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide
06169-09	Sample	10/26/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide
06169-10	Trip Blank	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide
06169-11	Trip Blank	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide
06169-12	Trip Blank	10/25/2021	11/24/2021	Dissolved metals, hexavalent chromium, and bromide

Sampler Design, Deployment, and Chemical Analysis

The SPeeper[™] sampler design for this project consisted of pre-cleaned and pre-filled 60 mL peeper vials made of polypropylene [PP]) with 0.45 micrometer (µm) polyethersulfone (PES) diffusion membranes in the lids of the vials. The SPeeper[™] vials were cleaned by washing with a laboratory grade detergent, performing a double rinse with ultrapure water, then using reagent grade hydrochloric acid to remove any potential metals followed by a final double rinse with ultrapure water to remove any remaining hydrochloric acid.

The vials were filled with ultrapure deoxygenated water (dissolved oxygen [DO] of less than 0.8 milligrams per liter [mg/L]) that was spiked with a potassium bromide (KBr) salt to target a concentration of 100 mg/L as bromide. After filling, the vials were stored and shipped to the Site in Mylar[™] bags that have very low gas permittivity and that were filled with the same water that was used to fill the SPeeper[™] vials.

For deployment, pre-cleaned polyethylene terephthalate glycol (PETG) frames that could contain four (4) SPeeper[™] vials each were also prepared. The 3D-printed custom frames were cleaned in the same way as the SPeeper[™] vials and shipped to the Site in Mylar[™] bags.

In total, 48 SPeeper[™] vials and 9 PETG frames were prepared for deployment. In the field, 36 of the prepared SPeeper[™] vials were removed from their Mylar[™] bags and immediately inserted into the pre-cleaned frames. Once inserted, the vials were deployed into the sediment at the Site. One (1) frame with 4 vials was deployed for each sampling location (9 field locations). The remaining twelve SPeeper[™] vials were designated for use as trip blanks. These samples remained in their sealed Mylar[™] bags until sample processing and were stored at 4 °C.

Golder SPEEP-024 10 January 2022 Page 3 of 4

The SPeeper[™] vials were deployed over two days between October 25, 2021 and October 26, 2021. The SPeepers[™] were retrieved on November 24, 2021. The deployment time for the samplers were between 29 and 30 days, based on the exact deployment and retrieval dates for each Site location.

Upon retrieval, the SPeepers[™] for each location were gently, but thoroughly rinsed off to remove excess sediment. Each vial was then sampled by piercing the side wall with a 60 mL high-density polyethylene (HDPE) syringe equipped with a 16-gauge stainless steel needle and filled with nonsite-related clean ambient air and leaving the syringe in the side of the vial. A second syringe, prepared similarly, was then used to pierce a hole in the bottom of the cleaned vial, and the syringe withdrawn. The pierced SPeeper[™] vial was positioned over the sample collection bottles and using the clean ambient air in the first syringe, the SPeeper[™] water was pushed out of the vial through the pierced hole and collected in the sample collection bottle. The same set of syringes were used for all 4 SPeeper[™] vials from a single location. Syringes were replaced for each new location.

On November 24, 2021 the trip blanks were removed from their Mylar[™] bags and sampled in the same way as described above for the deployed SPeepers[™]. Four (4) of the trip blank peepers were used to represent each trip blank (3 trip blanks in total, 4 peepers per trip blank).

For each sample set, samples were collected in Eurofins Environment Testing America-provided sample bottles for analysis of dissolved metals and bromide and samples were also collected in Agat Laboratories approved sample bottles for analysis of hexavalent chromium. After collection, dissolved metal and bromide samples were shipped to Eurofins Environment Testing America in Pittsburgh, PA and hexavalent chromium samples were shipped to Agat Laboratories in Burnaby, BC for analysis. The analytical report provided by Eurofins Environment Testing America and Agat Laboratories is attached to this report (Attachment B).

Results

 C_{free} values for selected analytes are reported in Table 1. The C_{free} concentrations were calculated as described in Attachment A using a first-order diffusion model. Diffusion coefficients used in the calculations for each analyte were sourced from the literature ^{2,3,4,5}.

For metals where multiple oxidation states may be observed in nature, the following species diffusion coefficients were selected for the purposes of estimating C_{free} concentrations:

- Copper Cu²⁺
- Vanadium V^{6+} as VO_4^{2-}
- Iron Fe³⁺
- Antimony Sb⁵⁺ as Sb(OH)₆⁻
- Manganese Mn²⁺
- Chromium Cr³⁺
- Hexavalent chromium Cr⁶⁺ as CrO₄²⁻
- Molybdenum Mo⁶⁺ as MoO₄²⁻

Tin was analyzed in the submitted SPeeperTM samplers. However, no known diffusion coefficient for tin in water could be determined from the literature. As a result, estimates for C_{free} of tin were not calculated for any of the samples.

For pH and hardness, an estimate for C_{free} was not calculated, and it is assumed that the pH and hardness reached equilibrium between the sediment porewater and the SPeeperTM.

For samples where bromide was not detected in the SPeeper[™] after deployment, it was assumed 100% equilibration between the SPeeper[™] and the porewater had been achieved and the concentration measured in the SPeeper[™] was equal to the concentration in the porewater (Tables A1 and A2).

⁵ J.G. Panther, W.W. Bennett, D.T. Welsh, P.R. Teasdale, Simultaneous Measurement of TraceMetal and Oxyanion Concentrations in Water using Diffusive Gradients in Thin Films with a Chelex–Metsorb Mixed Binding Layer, Analytical Chemistry, 86 (2013) 427-434.

² Thibodeaux, L.J. 1996. *Environmental chemodynamics: Movement of chemicals in air, water, and soil.* Wiley, New York, NY.

³ Buffle, J., Z. Zhang, and K. Startchev. 2007. Metal flux and dynamic speciation at (bio)interfaces. Part i: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. 2007. *Enviro. Sci. Tech.* 41:7609–7620.

⁴ Henry V. K. (Ed.) CRC handbook of thermophysical and thermochemical data. CRC press Inc. Boca Raton, 1994.

TABLE 1

Table 1: Freely Dissolved Concentration of Analytes in Sediment Porewater

Kelset Creek, Victoria, BC

Client ID	06169-01			06169-02			06169-03			06169-04			06169-05		
Analyte	Result	Qualifier	MDL												
Analyte	(mg/L)	Quaimer	(mg/L)												
Aluminum	ND		0.047	ND		0.12	0.025	J	0.013	0.053		0.013	ND		0.018
Nickel	0.0013	J	0.0010	ND		0.0025	0.00085	J	0.00034	0.0010	J	0.00034	0.00094	J	0.00041
Cadmium	ND		0.00063	ND		0.0016	ND		0.00022	ND		0.00022	ND		0.00026
Antimony	ND		0.0010	ND		0.0024	ND		0.00038	ND		0.00038	ND		0.00043
Sodium	11.4		0.64	58.1		1.5	18.0		0.35	18.0		0.35	17.6		0.36
Beryllium	ND		0.00060	ND		0.0015	ND		0.00018	ND		0.00018	ND		0.00023
Barium	0.033		0.0040	0.27		0.010	0.0086	J	0.0016	0.0082	J	0.0016	0.0091	J	0.0018
Calcium	28.7		0.34	98.3		0.86	20.0		0.13	21.0		0.13	23.2		0.15
Iron	1.91		0.066	136.4		0.17	0.049	J	0.020	0.071		0.020	0.030	J	0.026
Vanadium	ND		0.0049	0.031		0.013	0.0010		0.0010	0.0010		0.0010	0.0020		0.0016
Silver	ND		0.00029	ND		0.00062	ND		0.00018	ND		0.00018	ND		0.00018
Magnesium	10.7		0.24	45.0		0.61	7.3		0.083	7.60		0.083	8.9		0.10
Copper	ND		0.0018	ND	J	0.0046	0.0041		0.00063	0.0037		0.00063	0.0025		0.00076
Zinc	ND		0.0093	ND		0.024	0.012		0.0032	0.013		0.0032	ND		0.0039
Manganese	2.21		0.0025	16.1		0.0064	0.0039	J	0.00087	0.0031	J	0.00087	0.026		0.0010
Chromium	ND		0.0050	ND		0.013	ND		0.0015	ND		0.0015	ND		0.0019
Cobalt	0.00084	J	0.00037	0.0031	J	0.00093	ND		0.00013	ND		0.00013	ND		0.00016
Molybdenum	0.0016	J	0.00089	ND		0.0018	0.0019	J	0.00061	0.0020	J	0.00061	0.0018	J	0.00061
Strontium	0.14		0.0025	0.66		0.0062	0.086		0.00093	0.089		0.00093	0.10		0.0011
Boron	ND		0.087	ND		0.21	ND		0.039	ND		0.039	ND		0.043
Tin														-	
Hexavalent Chromium	ND		0.15	ND		0.44	ND		0.010	ND		0.010	ND		0.041
рН	7.70	H H3	0.10	7.4	H H3	0.10	7.8	H H3	0.10	7.8	H H3	0.10	8.0	H H3	0.10
Hardness as calcium carbonate	43		0.55	63.0		0.55	80.0		0.55	84.0		0.55	80.0		0.55

<u>Notes</u>

--: Not applicable. A diffusion coefficient for tin was not available in the literature, therefore, a C_{free} calculation was not completed.

H: Sample was prepped or analyzed beyond the specified holiding time.

H3: Sample was received and analyzed past holding time.

J: Result is less than the reporting limit but greater than or equal to the MDL and the concentration is an approximate value.

MDL: method detection limit

mg/L: milligrams per liter

ND: Not detected at the MDL shown in the third column for each sample.

Table 1: Freely Dissolved Concentration of Analytes in Sediment Porewater

Kelset Creek, Victoria, BC

Client ID		06169-06			06169-07			06169-08		06169-09		
Analyte	Result (mq/L)	Qualifier	MDL (mg/L)	Result (mq/L)	Qualifier	MDL (mg/L)	Result (mg/L)	Qualifier	MDL (mg/L)	Result (mg/L)	Qualifier	MDL (mq/L)
Aluminum	0.025	J	0.013	0.17		0.085	0.070	J	0.076	ND		0.083
Nickel	0.00069	J	0.00034	0.0043	J	0.0018	0.0045	J	0.0016	0.011		0.0017
Cadmium	ND		0.00022	ND		0.00111	ND		0.00099	ND		0.0011
Antimony	ND		0.00038	ND		0.0017	ND		0.0015	ND		0.0016
Sodium	17.0		0.35	328		1.04	45.8		0.94	58.2		1.02
Beryllium	ND		0.00018	ND		0.00108	ND		0.00096	ND		0.0010
Barium	0.0076	J	0.0016	0.12		0.0070	0.14		0.0063	0.16		0.0068
Calcium	19.0		0.13	96.9		0.60	86.7		0.54	135		0.59
Iron	0.055		0.020	59.3		0.119	44.4		0.11	47.2		0.12
Vanadium	0.0010		0.0010	0.015		0.0091	0.013		0.0081	ND		0.0089
Silver	ND		0.00018	ND		0.00045	ND		0.00041	ND		0.00044
Magnesium	7.1		0.083	87.6		0.43	33.5		0.38	50.0		0.42
Copper	0.0041		0.00063	ND		0.0032	ND	J	0.0029	ND		0.0031
Zinc	0.011		0.0032	ND		0.0165	ND		0.015	ND		0.016
Manganese	0.0020	J	0.00087	10.2		0.0044	11.4		0.0040	31.8		0.0043
Chromium	ND		0.0015	ND		0.0090	ND		0.0080	ND		0.0088
Cobalt	ND		0.00013	0.0055		0.00065	0.0080		0.00058	0.021		0.00063
Molybdenum	0.0019	J	0.00061	ND		0.00136	0.0019	J	0.0012	0.0046	J	0.0013
Strontium	0.081		0.00093	0.74		0.0043	0.50		0.0039	0.72		0.0042
Boron	0.066	J	0.039	0.53		0.149	ND		0.13	0.14	J	0.14
Tin												
Hexavalent Chromium	ND		0.010	ND		0.30	ND		0.26	ND		0.29
рН	8.0	H H3	0.10	7.7	H H3	0.10	7.6	H H3	0.10	7.9	H H3	0.10
Hardness as calcium carbonate	77.0		0.55	120.0		0.55	82.0		0.55	120.0		0.55

<u>Notes</u>

--: Not applicable. A diffusion coefficient for tin was not available in the literature, therefore, a C_{free} calculation was not completed.

H: Sample was prepped or analyzed beyond the specified holiding time.

H3: Sample was received and analyzed past holding time.

J: Result is less than the reporting limit but greater than or equal to the MDL and the concentration is an approximate value.

MDL: method detection limit

mg/L: milligrams per liter

ND: Not detected at the MDL shown in the third column for each sample.

SiREM

ATTACHMENT A:

DATA ANALYSIS METHODS

Attachment A:

Data Analysis Methods Concentrations of Freely Dissolved Analytes Measured via SPeeper™ Passive Samplers

The concentration of analytes in the SPeeperTM water (Table A1) obtained from the information provided in the analytical reports (Attachment B) are used in a multi-step data process to calculate C_{free} analytes as described below and adapted from Thomas and Arthur (2010).

Step 1:

The concentrations of the bromide reverse tracer in the SPeeperTM water [*Peeper_t*] were used to calculate the site-specific diffusion constant values (K_{mBr}) in each deployed sampler using the following equation

Reverse Tracer
$$K_{mBr} = \frac{-1}{t_{final}} \cdot \ln\left(\frac{\left[Peeper_{t=final}\right]}{\left[Peeper_{t=0}\right]}\right)$$

where:

- $Peeper_{t=0}$ = the concentration of the bromide reverse tracer present in the
SPeeperTM water at the beginning of the deployment (obtained from
the undeployed trip blanks)
- *Peeper*_{*t* = *final*} = the concentration of the bromide reverse tracer after the deployment (obtained from each deployed SPeeperTM sampler)
- *t_{final}* = the deployment time (in days)
- K_{mBr} = the site-specific diffusion constant (in days⁻¹)

Bromide K_{mBr} values for each sampler are shown in Table A2. The values are also expressed as a percentage of steady state (concentration at equilibrium).

<u>Step 2:</u>

The second step was to estimate K_{mi} values for the primary analytes in each of the deployed samplers. This was accomplished by developing a relationship between the site-specific bromide diffusion constant (K_{mBr}) values (from Table A2) and bromide diffusivity coefficient (D_{iBr}) and the site-specific diffusion constants and diffusivity coefficients for each analyte.

$$\frac{K_{mi}}{K_{mBr}} = \frac{D_i}{D_{Br}}$$
$$K_{mi} = \frac{D_i \cdot K_{mBr}}{D_{Br}}$$

 K_{mBr} = the site-specific bromide reverse tracer diffusion constant (in days⁻¹)

 K_{mi} = the site-specific primary analyte diffusion constant (in days⁻¹)

 D_{Br} = bromide diffusivity constant (in cm²/s)

 D_i = primary analyte diffusivity constant (in cm²/s)

<u>Step 3:</u>

Concentrations of some analytes (Table A1) in the SPeepersTM were corrected for trace levels of the analytes present in the control trip blanks (due to trace levels present in the peeper filling solution). Using the sample specific K_{mi} values, the expected amount of these trace analyte present in the sample at the end of deployment (*Trace Analyte* $_{t=final}$) was calculated via the following equation:

$$[Trace Analyte_{t = final}] = \frac{[Trace Analyte_{t = 0}]}{e^{K_{mi} \times t_{final}}}$$

where:

Trace Analyte _{t = final}	= the concentration of trace PCBs remaining in the sample at the end of the deployment
Trace Analyte $_{t=0}$	= the average concentration of the trace PCB in the PE at the beginning of the deployment (obtained from an average measurement of the trace PCBs in the PRC control blanks)
K _{mi}	= the elimination rate value predicted by the sampler-specific regression model (in days ⁻¹)
t _{final}	= the deployment time (in days)

Concentrations of *Trace Analyte* $_{t=final}$ values were then subtracted from the measured concentrations of the analytes in the deployed SPeepersTM (Table A1).

Step 4:

This step describes the calculation of sampling rate correction factors (*CF*s) for each primary analyte in each sampler.

$$CF = 1 - e^{(-K_{mi} \cdot t_{final})}$$

where:

K _{mi}	= the site-specific primary analyte diffusion constant (in days ⁻¹))
t _{final}	= the deployment time (in days).

Step 5:

The concentration of primary analyte in the SPeeperTM of each sampler (obtained from Table A1) were divided by the *CF* values to calculate the C_{free} concentration of the primary analytes. These are reported in Table 1. *C_{free}* Method Detection Limits (MDLs) were calculated in the approach described above using the MDL concentration from the analysis as reported from Eurofins Environmental Testing America and shown in Table A1.

References Cited

Thomas, B. and M.A. Arthur. 2010. Correcting porewater concentration measurements from peepers: Application of a reverse tracer. *Limnol. Oceanogr.: Methods.* 8: 403–413.

TABLE A1

Table A1: Concentration of Analytes in SPeeper

Kelset Creek, Victoria, BC

Client ID			06169-01			06169-02			06169-03			06169-04			06169-05			06169-06	
Analyte	Diffusion Tracer	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)
Bromide	X	26.0		0.053	59.0		0.21	ND		0.053	ND		0.053	0.51		0.053	ND		0.053
Aluminum		ND		0.013	0.015	J	0.013	0.025	J	0.013	0.053		0.013	ND		0.013	0.025	J	0.013
Nickel		0.00046	J	0.00034	ND		0.00034	0.00085	J	0.00034	0.0010	J	0.00034	0.00078	J	0.00034	0.00069	J	0.00034
Cadmium		ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022
Antimony		ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038
Sodium		6.30		0.35	14.0		0.35	18.0		0.35	18.0		0.35	17.0		0.35	17.0		0.35
Beryllium		ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018
Barium		0.013		0.0016	0.044		0.0016	0.0086	J	0.0016	0.0082	J	0.0016	0.0080	J	0.0016	0.0076	J	0.0016
Calcium		11.0		0.13	15.0		0.13	20.0		0.13	21.0		0.13	20.0		0.13	19.0		0.13
Iron		0.58		0.020	16.0		0.020	0.049	J	0.020	0.071		0.020	0.023	J	0.020	0.055		0.020
Vanadium		ND		0.0010	0.0023		0.0010	0.0010		0.0010	0.0010		0.0010	0.0012		0.0010	0.0010		0.0010
Silver		ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018
Magnesium		3.70		0.083	6.1		0.083	7.3		0.083	7.60		0.083	7.40		0.083	7.10		0.083
Copper		0.0020		0.00063	0.0019	J	0.00063	0.0041		0.00063	0.0037		0.00063	0.0032		0.00063	0.0041		0.00063
Zinc		0.0053		0.0032	0.011		0.0032	0.012		0.0032	0.013		0.0032	0.0085		0.0032	0.011		0.0032
Manganese		0.77		0.00087	2.20		0.00087	0.0039	J	0.00087	0.0031	J	0.00087	0.022		0.00087	0.0020	J	0.00087
Chromium		ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015
Cobalt		0.00030	J	0.00013	0.00043	J	0.00013	ND		0.00013	ND		0.00013	ND		0.00013	ND		0.00013
Molybdenum		0.0011	J	0.00061	ND		0.00061	0.0019	J	0.00061	0.0020	J	0.00061	0.0018	J	0.00061	0.0019	J	0.00061
Strontium		0.054		0.00093	0.10		0.00093	0.086		0.00093	0.089		0.00093	0.088		0.00093	0.081		0.00093
Boron		ND		0.039	ND		0.039	ND		0.039	ND		0.039	ND		0.039	0.066	J	0.039
Tin		ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	0.0014	J	0.0010
Hexavalent Chromium		ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
рН		7.70	H H3	0.10	7.40	H H3	0.10	7.80	H H3	0.10	7.80	H H3	0.10	8.00	H H3	0.10	8.00	H H3	0.10
Hardness as calcium carbonate		43.0		0.55	63.0		0.55	80.0		0.55	84.0		0.55	80.0		0.55	77.0		0.55

<u>Notes</u>

H: Sample was prepped or analyzed beyond the specified holiding time. H3: Sample was received and analyzed past holding time.

J: Result is less than the reporting limit but greater than or equal to the MDL and the concentration is an approximate value.

MDL: method detection limit

mg/L: milligrams per liter

ND: Not detected at the MDL shown in the third column for each sample.

SiREM

Table A1: Concentration of Analytes in SPeeper

Kelset Creek, Victoria, BC

Client ID			06169-07			06169-08			06169-09			06169-10			06169-11			06169-12	
Analyte	Diffusion Tracer	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)	Result	Qualifier	MDL (mg/L)
Bromide	X	48.0		0.27	44.0		0.21	47.0		0.11	90.0		0.21	91.0		0.21	91.0		0.21
Aluminum		0.032		0.013	0.018	J	0.013	ND		0.013	ND		0.013	ND		0.013	0.022	J	0.013
Nickel		0.00083	J	0.00034	0.0010	J	0.00034	0.0022		0.00034	ND		0.00034	ND		0.00034	ND		0.00034
Cadmium		ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022	ND		0.00022
Antimony		ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038	ND		0.00038
Sodium		110		0.35	17.0		0.35	20.0		0.35	ND		0.35	ND		0.35	ND		0.35
Beryllium		ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018
Barium		0.027		0.0016	0.035		0.0016	0.037		0.0016	ND		0.0016	ND		0.0016	ND		0.0016
Calcium		21.0		0.13	21.0		0.13	30.0		0.13	ND		0.13	0.34	J	0.13	0.24	J	0.13
Iron		10.0		0.020	8.40		0.020	8.2		0.020	ND		0.020	ND		0.020	ND		0.020
Vanadium		0.0016		0.0010	0.0016		0.0010	ND		0.0010									
Silver		ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018	ND		0.00018
Magnesium		17.0		0.083	7.30		0.083	10.0		0.083	ND		0.083	ND		0.083	ND		0.083
Copper		ND		0.00063	0.00066	J	0.00063	ND		0.00063	0.0087		0.00063	0.0072		0.00063	0.0035		0.00063
Zinc		ND		0.0032	0.0061		0.0032	0.028		0.0032	0.086		0.0032	0.083		0.0032	0.028		0.0032
Manganese		2.00		0.00087	2.50		0.00087	6.4		0.00087	0.0012	J	0.00087	ND		0.00087	ND		0.00087
Chromium		ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015	ND		0.0015
Cobalt		0.0011		0.00013	0.0018		0.00013	0.0043		0.00013	ND		0.00013	ND		0.00013	ND		0.00013
Molybdenum		ND		0.00061	0.00093	J	0.00061	0.0021	J	0.00061	ND		0.00061	ND		0.00061	ND		0.00061
Strontium		0.16		0.00093	0.12		0.00093	0.16		0.00093	ND		0.00093	0.0021	J	0.00093	0.0014	J	0.00093
Boron		0.14		0.039	ND		0.039	0.039	J	0.039	ND		0.039	ND		0.039	ND		0.039
Tin		ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010	ND		0.0010
Hexavalent Chromium		ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010	ND		0.010
рН		7.70	H H3	0.10	7.60	H H3	0.10	7.90	H H3	0.10	4.30	H H3	0.10	4.40	H H3	0.10	4.30	H H3	0.10
Hardness as calcium carbonate		120		0.55	82.0		0.55	120		0.55	ND		0.55	0.85	J	0.55	0.60	J	0.55

<u>Notes</u>

H: Sample was prepped or analyzed beyond the specified holiding time. H3: Sample was received and analyzed past holding time.

J: Result is less than the reporting limit but greater than or equal to the MDL and the concentration is an approximate value.

MDL: method detection limit

mg/L: milligrams per liter

ND: Not detected at the MDL shown in the third column for each sample.

SiREM

TABLE A2

Table A2: Location Specific Bromide Diffusion Constants (K_{D-Br}) and Percentage to Steady State Reached by Tracers During Deployment

Kelset Creek, Victoria, BC

Client ID	0616	69-01	0616	69-02	061	69-03	061	69-04	061	69-05	061	69-06	061	69-07	061	69-08	0616	69-09
Diffusion	K _{D-Br}	Steady State																
Tracer	(d ⁻¹)	%																
Bromide	0.0416	71.3	0.0143	34.9	NA	100	NA	100	0.1727	99.4	NA	100	0.0219	47.1	0.0241	51.5	0.0227	48.2

<u>Notes</u>

%: percent

d: day K_{D-Br} : location specific bromide diffusion constant

NA: Not Applicable. Bromide was not detected in the peeper sample, therefore a location specific bromide

diffusion coefficient was not calculable. It is assumed the peeper and pore water came to 100% equilibrium and the peeper concentration is equal to the porewater concentration.

SiREM

ATTACHMENT B:

ANALYTICAL REPORTS

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-130726-1 Client Project/Site: Kelset, Golder

For: Sirem, div of Geosyntec Consultants 130 Stone Rd West Guelph, Ontario N1G 3Z2

Attn: Dr. Brent Pautler

arw A. Cambu

Authorized for release by: 12/20/2021 2:57:39 PM

Carrie Gamber, Senior Project Manager (412)963-2428 Carrie.Gamber@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Visit us at: www.eurofinsus.com/Env

..... Links

Review your project results through

Total Access

Have a Question?

Ask-

The

Expert

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	13
QC Sample Results	22
QC Association Summary	25
Chain of Custody	28
Receipt Checklists	31

Job ID: 180-130726-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

CASE NARRATIVE

Client: Sirem, div of Geosyntec Consultants

Project: Kelset, Golder

Report Number: 180-130726-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/03/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 7.6 C (acceptable is 6.0 degrees C or less)

The samples were received at the laboratory outside the required temperature criteria. The temperature is noted and the analyses proceeded. Thermal preservation is not required for metals.

<u>IC</u>

Several samples were diluted due to the conductivity of the sample matrix. Elevated reporting limits (RLs) are provided.

METALS

Tin was detected in method blank MB 180-381123/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

GENERAL CHEMSITRY

The pH has a holding time of immediate. The pH performed in the laboratory is outside the immediate holding time. The data is flagged and reported.

Qualifiers

Metals								
Qualifier	Qualifier Description	4						
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.							
General Che	mistry	5						
Qualifier	Qualifier Description							
Н	Sample was prepped or analyzed beyond the specified holding time	Sample was prepped or analyzed beyond the specified holding time						
H3	Sample was received and analyzed past holding time.							
Glossary		7						
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8						
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery Q							
CFL	Contains Free Liquid	3						
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample							
DLC	Decision Level Concentration (Radiochemistry)							
EDL	Estimated Detection Limit (Dioxin)							
LOD	Limit of Detection (DoD/DOE)							
LOQ	Limit of Quantitation (DoD/DOE)							
MCL	EPA recommended "Maximum Contaminant Level"							
MDA	Minimum Detectable Activity (Radiochemistry)							

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin)

MPNMost Probable NumberMQLMethod Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

 QC
 Quality Control

 RER
 Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Sirem, div of Geosyntec Consultants Project/Site: Kelset, Golder Job ID: 180-130726-1

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-22
California	State	2891	04-30-22
Connecticut	State	PH-0688	09-30-22
Florida	NELAP	E871008	06-30-22
Georgia	State	PA 02-00416	04-30-22
Illinois	NELAP	004375	06-30-22
Kansas	NELAP	E-10350	01-31-22
Kentucky (UST)	State	162013	04-30-22
Kentucky (WW)	State	KY98043	12-31-21
Louisiana	NELAP	04041	06-30-22
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-21
Nevada	State	PA00164	08-31-22
New Hampshire	NELAP	2030	04-05-22
New Jersey	NELAP	PA005	06-30-22
New York	NELAP	11182	04-01-22
North Carolina (WW/SW)	State	434	12-31-21
North Dakota	State	R-227	04-30-22
Oregon	NELAP	PA-2151	02-06-22
Pennsylvania	NELAP	02-00416	04-30-22
Rhode Island	State	LAO00362	12-31-21
South Carolina	State	89014	04-30-22
Texas	NELAP	T104704528	03-31-22
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-22
Virginia	NELAP	10043	09-15-22
West Virginia DEP	State	142	01-31-22
Wisconsin	State	998027800	12-19-21

Sample Summary

Collected

11/24/21 15:00

11/24/21 13:45 12/03/21 09:30

11/24/21 14:25 12/03/21 09:30

11/24/21 15:40 12/03/21 09:30

11/24/21 16:05 12/03/21 09:30

11/24/21 17:00 12/03/21 09:30

11/25/21 09:15 12/03/21 09:30

11/25/21 09:45 12/03/21 09:30

11/25/21 10:30 12/03/21 09:30

11/25/21 10:50 12/03/21 09:30

11/25/21 11:30 12/03/21 09:30

11/25/21 12:00 12/03/21 09:30

Received

12/03/21 09:30

Matrix

Water

Client: Sirem, div of Geosyntec Consultants Project/Site: Kelset, Golder

Client Sample ID

06169-01

06169-02

06169-03

06169-04

06169-05

06169-06

06169-07

06169-08

06169-09

06169-10

06169-11

06169-12

Lab Sample ID

180-130726-1

180-130726-2

180-130726-3

180-130726-4

180-130726-5

180-130726-6

180-130726-7

180-130726-8

180-130726-9

180-130726-10

180-130726-11

180-130726-12

5
6
8
9

Method Summary

Client: Sirem, div of Geosyntec Consultants Project/Site: Kelset, Golder

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020B	Metals (ICP/MS)	SW846	TAL PIT
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	TAL PIT
EPA 9040C	рН	SW846	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Matrix: Water

Matrix: Water

Lab Sample ID: 180-130726-1

Lab Sample ID: 180-130726-2

Client Sample ID: 06169-01 Date Collected: 11/24/21 13:45 Date Received: 12/03/21 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		1			381392	12/09/21 01:24	JRB	TAL PIT
	Instrumen	t ID: INTEGRION								
Dissolved	Prep	3005A			25 mL	25 mL	381125	12/06/21 14:46	RGM	TAL PIT
Dissolved	Analysis	EPA 6020B		1			381477	12/08/21 11:44	RSK	TAL PIT
	Instrumen	it ID: A								
Total Recoverable	Analysis	SM 2340B		1			382224	12/14/21 15:14	RSR	TAL PIT
	Instrumen	t ID: NOEQUIP								
Dissolved	Analysis	EPA 9040C		1			381831	12/11/21 10:15	MJH	TAL PIT
	Instrumen	It ID: NOEQUIP								

Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		4			381484	12/09/21 18:43	JRB	TAL PIT
	Instrumer	t ID: INTEGRION								
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis	EPA 6020B		1			381477	12/08/21 11:52	RSK	TAL PIT
	Instrumer	it ID: A								
Total Recoverable	Analysis	SM 2340B		1			382224	12/14/21 15:14	RSR	TAL PIT
	Instrumer	t ID: NOEQUIP								
Dissolved	Analysis	EPA 9040C		1			381831	12/11/21 10:17	MJH	TAL PIT
	Instrumer	t ID: NOEQUIP								

Client Sample ID: 06169-03 Date Collected: 11/24/21 15:00 Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-3 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: INTEGRION		1			381392	12/09/21 02:51	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B t ID: A		1			381477	12/08/21 11:55	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:19	MJH	TAL PIT

Page 8 of 31

Eurofins TestAmerica, Pittsburgh

Matrix: Water

Matrix: Water

5

8

Lab Sample ID: 180-130726-4

Lab Sample ID: 180-130726-5

Client Sample ID: 06169-04 Date Collected: 11/24/21 15:40 Date Received: 12/03/21 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		1			381392	12/09/21 03:05	JRB	TAL PIT
	Instrumen	t ID: INTEGRION								
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis	EPA 6020B		1			381477	12/08/21 11:59	RSK	TAL PIT
	Instrumen	it ID: A								
Total Recoverable	Analysis	SM 2340B		1			382224	12/14/21 15:14	RSR	TAL PIT
	Instrumen	t ID: NOEQUIP								
Dissolved	Analysis	EPA 9040C		1			381831	12/11/21 10:20	MJH	TAL PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: 06169-05 Date Collected: 11/24/21 16:05 Date Received: 12/03/21 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A It ID: INTEGRION		1			381392	12/09/21 03:20	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B tt ID: A		1			381477	12/08/21 12:03	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C It ID: NOEQUIP		1			381831	12/11/21 10:22	MJH	TAL PIT

Client Sample ID: 06169-06 Date Collected: 11/24/21 17:00 Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-6 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: INTEGRION		1			381392	12/09/21 00:12	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B t ID: A		1			381477	12/08/21 12:10	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:24	MJH	TAL PIT

Matrix: Water

Matrix: Water

5

8

Lab Sample ID: 180-130726-7

Lab Sample ID: 180-130726-8

Client Sample ID: 06169-07 Date Collected: 11/25/21 09:15 Date Received: 12/03/21 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A It ID: INTEGRION		5			381392	12/09/21 03:49	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B tt ID: A		1			381477	12/08/21 12:14	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:25	MJH	TAL PIT

Client Sample ID: 06169-08 Date Collected: 11/25/21 09:45 Date Received: 12/03/21 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	EPA 9056A		4			381482	12/09/21 09:36	JRB	TAL PIT
	Instrumer	nt ID: CHICS2100B								
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis	EPA 6020B		1			381477	12/08/21 12:24	RSK	TAL PIT
	Instrumer	nt ID: A								
Total Recoverable	Analysis	SM 2340B		1			382224	12/14/21 15:14	RSR	TAL PIT
	Instrumer	nt ID: NOEQUIP								
Dissolved	Analysis	EPA 9040C		1			381831	12/11/21 10:27	MJH	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: 06169-09 Date Collected: 11/25/21 10:30 Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-9 Matrix: Water

Prep Type Dissolved	Batch Type Analysis	Batch Method EPA 9056A	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 381697	Prepared or Analyzed 12/10/21 21:30	Analyst JRB	Lab TAL PIT
	Instrument	t ID: CHIC2100A								
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis	EPA 6020B		1			381477	12/08/21 12:28	RSK	TAL PIT
	Instrument	tID: A								
Total Recoverable	Analysis Instrument	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrument	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:37	MJH	TAL PIT

Lab Sample ID: 180-130726-10

Lab Sample ID: 180-130726-11

Client Sample ID: 06169-10 Date Collected: 11/25/21 10:50 Date Received: 12/03/21 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A It ID: INTEGRION		4			381484	12/09/21 18:57	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B tt ID: A		1			381477	12/08/21 12:32	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:39	MJH	TAL PIT

Client Sample ID: 06169-11 Date Collected: 11/25/21 11:30 Date Received: 12/03/21 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A It ID: INTEGRION		4			381484	12/09/21 19:12	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B tt ID: A		1			381477	12/08/21 12:35	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C It ID: NOEQUIP		1			381831	12/11/21 10:40	MJH	TAL PIT

Client Sample ID: 06169-12 Date Collected: 11/25/21 12:00 Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-12 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Dissolved	Analysis Instrumen	EPA 9056A t ID: INTEGRION		4			381484	12/09/21 19:26	JRB	TAL PIT
Dissolved	Prep	3005A			50 mL	50 mL	381123	12/06/21 14:44	RGM	TAL PIT
Dissolved	Analysis Instrumen	EPA 6020B t ID: A		1			381477	12/08/21 12:39	RSK	TAL PIT
Total Recoverable	Analysis Instrumen	SM 2340B t ID: NOEQUIP		1			382224	12/14/21 15:14	RSR	TAL PIT
Dissolved	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			381831	12/11/21 10:42	MJH	TAL PIT

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Matrix: Water

Matrix: Water

5

8

Client: Sirem, div of Geosyntec Consultants Project/Site: Kelset, Golder

Analyst References:

Lab: TAL PIT Batch Type: Prep RGM = Rebecca Manns Batch Type: Analysis JRB = James Burzio MJH = Michael Houde RSK = Robert Kurtz RSR = Roseann Ruyechan

Lab Sample ID: 180-130726-1

Matrix: Water

5 6

9

Client Sample ID: 06169-01 Date Collected: 11/24/21 13:45 Date Received: 12/03/21 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	26		0.10	0.053	mg/L			12/09/21 01:24	
Method: EPA 6020B - Metals (IC	CP/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		30	13	ug/L		12/06/21 14:46	12/08/21 11:44	
Nickel	0.46	J	1.0	0.34	ug/L		12/06/21 14:46	12/08/21 11:44	
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:46	12/08/21 11:44	
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:46	12/08/21 11:44	
Sodium	6300		500	350	ug/L		12/06/21 14:46	12/08/21 11:44	
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:46	12/08/21 11:44	
Barium	13		10	1.6	ug/L		12/06/21 14:46	12/08/21 11:44	
Calcium	11000		500	130	ug/L		12/06/21 14:46	12/08/21 11:44	
Iron	580		50	20	ua/L		12/06/21 14:46	12/08/21 11:44	
Vanadium	ND		1.0	0.99	ua/L		12/06/21 14:46	12/08/21 11:44	
Silver	ND		1.0	0.18	9/= ua/l		12/06/21 14.46	12/08/21 11.44	
Magnesium	3700		500	83	ug/L		12/06/21 14:46	12/08/21 11:44	
Conner	2.0		2.0	0.63	ug/L		12/06/21 14:46	12/08/21 11:44	
Zinc	5.3		5.0	3.2	ug/L		12/06/21 14:46	12/08/21 11:44	
Manganoso	770		5.0	0.87	ug/L		12/06/21 14:46	12/08/21 11:44	
Chromium			2.0	1.5	ug/L		12/06/21 14:46	12/08/21 11:44	
Cabalt			2.0	0.12	ug/L		12/06/21 14:40	12/00/21 11.44	
	0.30	J	0.50	0.13	ug/L		12/00/21 14.40	12/00/21 11.44	
woiybaenum	1.1	. .	5.0	0.01	ug/L		12/06/21 14:40	12/06/21 11:44	
Strontium	54		5.0	0.93	ug/L		12/06/21 14:46	12/08/21 11:44	
Boron	ND		80	39	ug/L		12/06/21 14:46	12/08/21 11:44	
-			5.0	0.00	ug/L		12/00/21 14.40	12/00/21 11.44	
Method: SM 2340B - Total Hard	ness (as C Result	CaCO3) by Ca Qualifier	alculation -	Total R	ecoverat	le ח	Prenared	Analyzed	Dil Fa
Hardness as calcium carbonate	43		3.3	0.55	ma/L			12/14/21 15:14	Dirtu
			0.0	0.00	<u>g</u> , _			,,	
-									
General Chemistry - Dissolved	Decult	Qualifian	ы	MDI	11:4:4		Drenered	Analyzad	
General Chemistry - Dissolved Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
General Chemistry - Dissolved Analyte pH	Result 7.7	Qualifier	RL 0.1	MDL 0.1	Unit SU	<u>D</u>	Prepared	Analyzed 12/11/21 10:15	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02	Result 7.7	Qualifier H H3	RL 0.1	MDL 0.1	Unit SU	<u>D</u> 	Prepared b Sample	Analyzed 12/11/21 10:15	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25	Result 7.7	Qualifier H H3	RL 0.1	MDL 0.1	Unit SU	<u>D</u> 	Prepared b Sample	Analyzed 12/11/21 10:15 ID: 180-130 Matrix	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30	Result 7.7	Qualifier H H3	RL 0.1	MDL 0.1	Unit SU	<u>P</u> La	Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix	Dil Fac 726-2 Wate
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Io	Result 7.7	Qualifier H H3	RL 0.1	MDL 0.1	Unit SU	D La	Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix	Dil Fac 726-2 Wate
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Io Analyte	Result 7.7	Qualifier H H3	RL 0.1	MDL 0.1	Unit SU Unit	D La	Prepared b Sample Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed	Dil Fac
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide	Result 7.7 on Chroma Result 59	Qualifier H H3 atography - E Qualifier	RL 0.1 Dissolved RL 0.40	MDL 0.1 MDL 0.21	Unit SU Unit mg/L	<u>D</u> La	Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43	Dil Fac
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide	Result 7.7 on Chroma Result 59	Qualifier H H3 Atography - E Qualifier	RL 0.1 Dissolved RL 0.40	MDL 0.1 MDL 0.21	Unit SU Unit mg/L	<u>D</u> La	Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte	Result 7.7 on Chroma Result 59 CP/MS) - D Result	Qualifier H H3 atography - E Qualifier Ssolved Qualifier	RL 0.1 Dissolved RL 0.40	MDL 0.1 MDL 0.21	Unit SU Unit mg/L	<u>D</u> 	Prepared b Sample Prepared Prepared	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum	Result 7.7 on Chroma Result 59 CP/MS) - D Result	Qualifier H H3 atography - E Qualifier issolved Qualifier	RL 0.1 Dissolved RL 0.40 RL 30	MDL 0.1 MDL 0.21	Unit SU Unit mg/L	<u>D</u> <u>D</u>	Prepared b Sample Prepared Prepared 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel	Result 7.7 on Chroma Result 59 CP/MS) - D Result 15	Qualifier H H3	RL 0.1 Dissolved RL 0.40 RL 30 1.0	MDL 0.1 MDL 0.21 MDL 13 0.34	Unit SU Unit mg/L Unit ug/L ug/l	D La	Prepared b Sample Prepared 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel Cadmium	Result 7.7 on Chroma Result 59 CP/MS) - D Result 15 ND	Qualifier H H3	RL 0.1 Dissolved RL 0.40 RL 30 1.0 10	MDL 0.1 MDL 0.21 MDL 13 0.34 0.22	Unit SU Unit mg/L Unit ug/L ug/L ug/L	D La	Prepared Prepared Prepared Prepared 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52	Dil Fa 726-2 Wate Dil Fa Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel Cadmium Antimony	Result 7.7 2 0 Chroma Result 59 CP/MS) - D Result 15 ND ND	Qualifier H H3 Atography - E Qualifier issolved Qualifier J	RL 0.1 Dissolved RL 0.40 RL 30 1.0 2.0	MDL 0.1 0.21 0.21 13 0.34 0.22 0.38	Unit SU Unit mg/L Unit ug/L ug/L ug/L	D La	Prepared Prepared Prepared Prepared 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52	Dil Fa 726-2 Wate Dil Fa Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel Cadmium Antimony Sodium	Result 7.7 on Chroma Result 59 CP/MS) - D Result 15 ND ND ND	Qualifier H H3 Atography - C Qualifier issolved Qualifier J	RL 0.1 Dissolved RL 0.40 RL 30 1.0 2.0 500	MDL 0.1 0.21 0.21 13 0.34 0.22 0.38 350	Unit SU Unit mg/L Unit ug/L ug/L ug/L ug/L	<u>D</u>	Prepared Prepared Prepared Prepared 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel Cadmium Antimony Sodium Bandiium	Result 7.7 on Chroma Result 59 CP/MS) - D Result 15 ND ND ND 14000	Qualifier H H3 Atography - C Qualifier issolved Qualifier J	RL 0.1 Dissolved RL 0.40 RL 30 1.0 2.0 500 4.0	MDL 0.1 0.21 0.21 13 0.34 0.22 0.38 350 0.40	Unit SU Unit mg/L Unit ug/L ug/L ug/L ug/L ug/L	<u>P</u> <u>P</u> <u>P</u>	Prepared b Sample Prepared 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52	Dil Fa
General Chemistry - Dissolved Analyte pH Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ic Analyte Bromide Method: EPA 6020B - Metals (IC Analyte Aluminum Nickel Cadmium Antimony Sodium Beryllium	Result 7.7 on Chroma Result 59 CP/MS) - D Result 15 ND ND ND 14000 ND	Qualifier H H3 Atography - C Qualifier issolved Qualifier J	RL 0.1 Dissolved RL 0.40 RL 30 1.0 2.0 500 1.0	MDL 0.1 0.21 0.21 13 0.34 0.22 0.38 350 0.18	Unit SU Unit mg/L Unit ug/L ug/L ug/L ug/L ug/L	<u>P</u> La	Prepared b Sample Prepared 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	Analyzed 12/11/21 10:15 ID: 180-130 Matrix Analyzed 12/09/21 18:43 Analyzed 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52 12/08/21 11:52	Dil Fa 726-; Wate Dil Fa

Lab Sample ID: 180-130726-2

Matrix: Water

5 6

9

Client Sample ID: 06169-02 Date Collected: 11/24/21 14:25 Date Received: 12/03/21 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	15000		500	130	ug/L		12/06/21 14:44	12/08/21 11:52	1
Iron	16000		50	20	ug/L		12/06/21 14:44	12/08/21 11:52	1
Vanadium	2.3		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 11:52	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 11:52	1
Magnesium	6100		500	83	ug/L		12/06/21 14:44	12/08/21 11:52	1
Copper	1.9	J	2.0	0.63	ug/L		12/06/21 14:44	12/08/21 11:52	1
Zinc	11		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 11:52	1
Manganese	2200		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 11:52	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 11:52	1
Cobalt	0.43	J	0.50	0.13	ug/L		12/06/21 14:44	12/08/21 11:52	1
Molybdenum	ND		5.0	0.61	ug/L		12/06/21 14:44	12/08/21 11:52	1
Strontium	100		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 11:52	1
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 11:52	1
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 11:52	1
Method: SM 2340B - Total Hard	ness (as C	CaCO3) by ca	alculation -	Total R	ecoverat	ole			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	63		3.3	0.55	mg/L			12/14/21 15:14	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.4	H H3	0.1	0.1	SU			12/11/21 10:17	1

Client Sample ID: 06169-03 Date Collected: 11/24/21 15:00

Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-3

Matrix: Water

Method: EPA 9056A - A	Anions, Ion Chroma	atography -	Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.10	0.053	mg/L			12/09/21 02:51	1
	Metals (ICP/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	25	J	30	13	ug/L		12/06/21 14:44	12/08/21 11:55	1
Nickel	0.85	J	1.0	0.34	ug/L		12/06/21 14:44	12/08/21 11:55	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 11:55	1
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 11:55	1
Sodium	18000		500	350	ug/L		12/06/21 14:44	12/08/21 11:55	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 11:55	1
Barium	8.6	J	10	1.6	ug/L		12/06/21 14:44	12/08/21 11:55	1
Calcium	20000		500	130	ug/L		12/06/21 14:44	12/08/21 11:55	1
Iron	49	J	50	20	ug/L		12/06/21 14:44	12/08/21 11:55	1
Vanadium	1.0		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 11:55	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 11:55	1
Magnesium	7300		500	83	ug/L		12/06/21 14:44	12/08/21 11:55	1
Copper	4.1		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 11:55	1
Zinc	12		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 11:55	1
Manganese	3.9	J	5.0	0.87	ug/L		12/06/21 14:44	12/08/21 11:55	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 11:55	1
Cobalt	ND		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 11:55	1
Molybdenum	1.9	J	5.0	0.61	ug/L		12/06/21 14:44	12/08/21 11:55	1

Client Sample Results

Job ID: 180-130726-1

Client Sample ID: 06169-03 Date Collected: 11/24/21 15:00 Date Received: 12/03/21 09:30						La	b Sample	ID: 180-130 Matrix)726-3 : Water
Method: EPA 6020B - Metals (IC	P/MS) - D	issolved (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium	86		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 11:55	1
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 11:55	
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 11:55	
Mothod: SM 2240B Total Hardn		$C_{2}(02)$ by	calculation	Total P	ocovoral				
Analyte	Rosult	Oualifier	RI		Unit		Propared	Analyzod	Dil Fa
Hardness as calcium carbonate	80	Quaimer	3.3	0.55	mg/L			12/14/21 15:14	
					-				
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
рН	7.8	H H3	0.1	0.1	SU			12/11/21 10:19	
Client Sample ID: 06169-04						La	b Sample	ID: 180-130)726-4
Date Collected: 11/24/21 15:40								Matrix	: Wate
Date Received: 12/03/21 09:30									
Method: EPA 9056A - Anions, Io	n Chroma	atography	- Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Bromide	ND		0.10	0.053	mg/L			12/09/21 03:05	
Method: EPA 6020B - Metals (IC)	P/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	53		30	13	ua/L		12/06/21 14:44	12/08/21 11:59	
Nickel	0.98	а	1.0	0.34	ua/L		12/06/21 14:44	12/08/21 11:59	
Cadmium	ND	•	1.0	0.22	ua/L		12/06/21 14:44	12/08/21 11:59	
Antimony	ND		2.0	0.38	ua/L		12/06/21 14:44	12/08/21 11:59	
Sodium	18000		500	350	ua/L		12/06/21 14:44	12/08/21 11:59	
Bervllium	ND		1.0	0.18	ua/L		12/06/21 14:44	12/08/21 11:59	
Barium	8.2	J	10	1.6	ua/L		12/06/21 14:44	12/08/21 11:59	
Calcium	21000	-	500	130	ua/L		12/06/21 14:44	12/08/21 11:59	
Iron	71		50	20	ua/L		12/06/21 14:44	12/08/21 11:59	
Vanadium	1.0		1.0	0.99	ua/L		12/06/21 14:44	12/08/21 11:59	
Silver	ND		1.0	0.18	ua/L		12/06/21 14:44	12/08/21 11:59	
Magnesium	7600		500	83	ua/L		12/06/21 14:44	12/08/21 11:59	
Copper	3.7		2.0	0.63	ua/L		12/06/21 14:44	12/08/21 11:59	
Zinc	13		5.0	32	ua/l		12/06/21 14:44	12/08/21 11:59	
Manganese	3.1	a.	5.0	0.87	ua/L		12/06/21 14:44	12/08/21 11:59	
Chromium	ND		2 0	1.5	ua/L		12/06/21 14.44	12/08/21 11:59	
Cobalt	ND		0.50	0.13	ua/L		12/06/21 14.44	12/08/21 11:59	
Molybdenum	2.0	J	5.0	0.61	ug/L		12/06/21 14:44	12/08/21 11:59	
Strontium	89		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 11:59	
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 11:59	
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 11:59	
 Method: SM 2340B - Total Hardn	iess (as C	CaCO3) by	calculation -	Total R	ecoveral	ole			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hardness as calcium carbonate	84		3.3	0.55	mg/L			12/14/21 15:14	
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	7.8	H H3	0.1	0.1	SU			12/11/21 10:20	

Eurofins TestAmerica, Pittsburgh

RL

MDL Unit

D

Prepared

Lab Sample ID: 180-130726-5

Analyzed

Matrix: Water

Dil Fac

Client Sample ID: 06169-05 Date Collected: 11/24/21 16:05 Date Received: 12/03/21 09:30 Method: EPA 9056A - Anions, Ion Chromatography - Dissolved Analyte Result Qualifier Dromida

Bromide	0.51		0.10	0.053	mg/L			12/09/21 03:20	1
Method: EPA 6020B - Metals (II	CP/MS) - D Result	ISSOIVED Qualifier	RI	мы	Unit	п	Prenared	Analyzed	Dil Fac
Aluminum	ND		30	13			12/06/21 14·44	12/08/21 12:03	1
Nickel	0.78		1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:03	1
Cadmium	ND	•	1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:03	1
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:03	
Sodium	17000		500	350	ua/L		12/06/21 14:44	12/08/21 12:03	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:03	1
Barium	8.0	J	10	1.6	ug/L		12/06/21 14:44	12/08/21 12:03	1
Calcium	20000		500	130	ug/L		12/06/21 14:44	12/08/21 12:03	1
Iron	23	J	50	20	ug/L		12/06/21 14:44	12/08/21 12:03	1
Vanadium	1.2		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:03	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:03	1
Magnesium	7400		500	83	ug/L		12/06/21 14:44	12/08/21 12:03	1
Copper	3.2		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:03	1
Zinc	8.5		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:03	1
Manganese	22		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:03	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:03	1
Cobalt	ND		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:03	1
Molybdenum	1.8	J	5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:03	1
Strontium	88		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:03	1
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 12:03	1
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:03	1
Mathed, CM 0240D Tatal List			alaulatian	Tetal D					
Method: SM 2340B - Total Hard	Iness (as C	acO3) by ca	alculation -				Droporod	Applyzod	
	Result	Quaimer		0.55			Frepareu	12/11/21 15:14	
naruness as calcium carbonate	00		5.5	0.00	mg/L			12/14/21 13.14	
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.0	H H3	0.1	0.1	SU			12/11/21 10:22	1
lient Comple ID: 00400.00	•						h Comula	ID: 400 400	700.0
inent Sample ID: 06169-06						La	in Sample	טט: 180-130	1/20-0
ate Collected: 11/24/21 17:00								Matrix	: Water
vate Received: 12/03/21 09:30									
Method: EPA 9056A - Anions, I	on Chroma	atography -	Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.10	0.053	mg/L			12/09/21 00:12	1
•					-				
Method: EPA 6020B - Metals (I	CP/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	25	J	30	13	ug/L		12/06/21 14:44	12/08/21 12:10	1
Nickol	0 60		10	0.34	ua/l		12/06/21 11.11	12/08/21 12.10	1

Aummun	20 0	00	10	ug/L	12/00/21 14.44	12/00/21 12:10	
Nickel	0.69 J	1.0	0.34	ug/L	12/06/21 14:44	12/08/21 12:10	1
Cadmium	ND	1.0	0.22	ug/L	12/06/21 14:44	12/08/21 12:10	1
Antimony	ND	2.0	0.38	ug/L	12/06/21 14:44	12/08/21 12:10	1
Sodium	17000	500	350	ug/L	12/06/21 14:44	12/08/21 12:10	1
Beryllium	ND	1.0	0.18	ug/L	12/06/21 14:44	12/08/21 12:10	1
Barium	7.6 J	10	1.6	ug/L	12/06/21 14:44	12/08/21 12:10	1

Lab Sample ID: 180-130726-6

Matrix: Water

5 6

9

Client Sample ID: 06169-06 Date Collected: 11/24/21 17:00 Date Received: 12/03/21 09:30

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	19000		500	130	ug/L		12/06/21 14:44	12/08/21 12:10	1
ron	55		50	20	ug/L		12/06/21 14:44	12/08/21 12:10	1
/ anadium	1.0		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:10	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:10	1
Magnesium	7100		500	83	ug/L		12/06/21 14:44	12/08/21 12:10	1
Copper	4.1		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:10	1
Zinc	11		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:10	1
Manganese	2.0	J	5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:10	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:10	1
Cobalt	ND		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:10	1
Molybdenum	1.9	J	5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:10	1
Strontium	81		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:10	1
Boron	66	J	80	39	ug/L		12/06/21 14:44	12/08/21 12:10	1
Гin	1.4	J	5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:10	1
Method: SM 2340B - Total Hardne	ess (as C	aCO3) by c	alculation -	Total R	ecoveral	ole			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
lardness as calcium carbonate	77		3.3	0.55	mg/L			12/14/21 15:14	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
H	8.0	H H3	0.1	0.1	SU			12/11/21 10:24	1

Date Collected: 11/25/21 09:15

Date Received: 12/03/21 09:30

Method: EPA 9056A - Anions, Ion Chroma	atography - I	Dissolved						
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide 48		0.50	0.27	mg/L			12/09/21 03:49	5
Method: EPA 6020B - Metals (ICP/MS) - Di	issolved							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum 32		30	13	ug/L		12/06/21 14:44	12/08/21 12:14	1
Nickel 0.83	J	1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:14	1
Cadmium ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:14	1
Antimony ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:14	1
Sodium 110000		500	350	ug/L		12/06/21 14:44	12/08/21 12:14	1
Beryllium ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:14	1
Barium 27		10	1.6	ug/L		12/06/21 14:44	12/08/21 12:14	1
Calcium 21000		500	130	ug/L		12/06/21 14:44	12/08/21 12:14	1
Iron 10000		50	20	ug/L		12/06/21 14:44	12/08/21 12:14	1
Vanadium 1.6		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:14	1
Silver ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:14	1
Magnesium 17000		500	83	ug/L		12/06/21 14:44	12/08/21 12:14	1
Copper ND		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:14	1
Zinc ND		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:14	1
Manganese 2000		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:14	1
Chromium ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:14	1
Cobalt 1.1		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:14	1
Molybdenum ND		5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:14	1

Client Sample Results

Job ID: 180-130726-1

Client Sample ID: 06169-07						La	b Sample	ID: 180-130	726-7
Date Collected: 11/25/21 09:15								Matrix	: Water
Date Received: 12/03/21 09:30									
Method: EPA 6020B - Metals (ICP	P/MS) - D	issolved (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium	160		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:14	1
Boron	140		80	39	ug/L		12/06/21 14:44	12/08/21 12:14	1
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:14	1
- Method: SM 2340B - Total Hardne	aee (ae ($C_{2}C(3)$ by c	alculation -	Total P	ocovorah				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	120		3.3	0.55	mg/L			12/14/21 15:14	1
=					0				
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_рН	7.7	Н НЗ	0.1	0.1	SU			12/11/21 10:25	1
Client Sample ID: 06169-08						1.2	h Samplo	180_130	726-8
						LC		ID. 100-150 Motrix	Moto
Date Collecteu. 11/20/21 09.45 Date Received: 12/03/21 09:30								waulx	. water
Jale Neceiveu. 12/03/21 03.30									
Method: EPA 9056A - Anions, Ior	h Chroma	atography -	Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	44		0.40	0.21	mg/L			12/09/21 09:36	4
Method: EPA 6020B - Metals (ICP	имs) - D	issolved				_	- ·		
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	18	J	30	13	ug/L		12/06/21 14:44	12/08/21 12:24	1
Nickel	0.98	J	1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:24	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:24	
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:24	-
Sodium	17000		500	350	ug/L		12/06/21 14:44	12/08/21 12:24	-
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:24	
Barium	35		10	1.6	ug/L		12/06/21 14:44	12/08/21 12:24	
Calcium	21000		500	130	ug/L		12/06/21 14:44	12/08/21 12:24	-
Iron	8400		50	20	ug/L		12/06/21 14:44	12/08/21 12:24	
Vanadium	1.6		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:24	
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:24	
Magnesium	7300		500	83	ug/L		12/06/21 14:44	12/08/21 12:24	
Copper	0.66	J	2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:24	
Zinc	6.1		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:24	
Manganese	2500		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:24	•
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:24	
Cobalt	1.8		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:24	
Molybdenum	0.93	J	5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:24	•
Strontium	120		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:24	
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 12:24	
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:24	1
Mothed: CM 2240D Total Handa			alaulatian	Total D					
Method: SW 2340B - Iotal Hardho		acus) by c			ecoverat	910 P	Droparad	Analyzed	
	Result	Juaillief	<u></u>				Frepareu	12/11/21 15:14	
naruness as calcium cardonate	82		3.3	0.55	ing/L			12/14/21 15:14	
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PH	7.6	H H3	0.1	0.1	SU			12/11/21 10:27	1

Lab Sample ID: 180-130726-9

Matrix: Water

5 6

9

Client Sample ID: 06169-09 Date Collected: 11/25/21 10:30 Date Received: 12/03/21 09:30

Method: EPA 9056A - Anions, I	on Chroma	atography	- Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	47		0.20	0.11	mg/L			12/10/21 21:30	2
Method: EPA 6020B - Metals (IC	CP/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Aluminum	ND			13	ug/L		12/06/21 14:44	12/08/21 12:28	1
Nickel	2.2		1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:28	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:28	1
Antimony	ND		2.0	0.38	ua/L		12/06/21 14:44	12/08/21 12:28	1
Sodium	20000		500	350	ug/L		12/06/21 14:44	12/08/21 12:28	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:28	1
Barium	37		10	1.6	ua/L		12/06/21 14:44	12/08/21 12:28	1
Calcium	30000		500	130	ua/L		12/06/21 14:44	12/08/21 12:28	1
Iron	8200		50	20	ua/L		12/06/21 14:44	12/08/21 12:28	1
Vanadium	ND		10	0.99	ua/l		12/06/21 14.44	12/08/21 12:28	1
Silver	ND		1.0	0.18	ua/l		12/06/21 14:44	12/08/21 12:28	. 1
Magnesium	10000		500	83	ug/L		12/06/21 14:44	12/08/21 12:28	1
Copper	ND		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:28	
Zinc	28		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:28	1
Manganasa	£400		5.0	0.2	ug/L		12/06/21 14:44	12/08/21 12:20	1
Chromium			2.0	1.5	ug/L		12/06/21 14:44	12/00/21 12:20	
			2.0	0.12	ug/L		12/06/21 14:44	12/00/21 12.20	1
	4.3		0.50	0.13	ug/∟		12/00/21 14:44	12/00/21 12.20	1
Molybaenum	2.1	. J	5.0	0.01	ug/L		12/06/21 14:44	12/00/21 12:20	۱ ۸
Strontium	160		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:28	1
Boron	39	J	80	39	ug/L		12/06/21 14:44	12/08/21 12:28	1
lin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:28	1
	ness (as C	CaCO3) by	calculation -	Total R	ecovera	ıble			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	120		3.3	0.55	mg/L			12/14/21 15:14	1
=									
General Chemistry - Dissolved	Posult	Qualifier	DI	мы	Unit	п	Propared	Analyzod	Dil Eac
	T O						Flepaleu	12/11/21 10:27	
_рн	7.9	ппз	0.1	0.1	30			12/11/21 10.37	I
Client Sample ID: 06169-10						Lab	Sample II	D: 180-1307	26-10
Date Collected: 11/25/21 10:50								Matrix	: Water
Date Received: 12/03/21 09:30									
_									
Method: EPA 9056A - Anions, lo	on Chroma	atography	- Dissolved						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	90		0.40	0.21	mg/L			12/09/21 18:57	4
Nothed: EDA 6020BMotole ///		incolved							
Method: EPA 6020B - Metals (IC	5P/IVIS) - D	Issolved				_	- ·		
	Result	Qualifier	RL	MDL	Unit	<u> </u>	Prepared	Analyzed	Dil Fac
Aluminum	ND		30	13	ug/L		12/06/21 14:44	12/08/21 12:32	1
Nickel	ND		1.0	0.34	ug/L 		12/06/21 14:44	12/08/21 12:32	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:32	1
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:32	1
Sodium	ND		500	350	ug/L		12/06/21 14:44	12/08/21 12:32	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:32	1
Barium	ND		10	1.6	ug/L		12/06/21 14:44	12/08/21 12:32	1

Client Sample ID: 06169-10 Date Collected: 11/25/21 10:50 Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-10 Matrix: Water

5 6

9

Method: EPA 6020B - Metals (ICP/MS) - D	issolved (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	ND		500	130	ug/L		12/06/21 14:44	12/08/21 12:32	1
Iron	ND		50	20	ug/L		12/06/21 14:44	12/08/21 12:32	1
Vanadium	ND		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:32	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:32	1
Magnesium	ND		500	83	ug/L		12/06/21 14:44	12/08/21 12:32	1
Copper	8.7		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:32	1
Zinc	86		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:32	1
Manganese	1.2	J	5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:32	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:32	1
Cobalt	ND		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:32	1
Molybdenum	ND		5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:32	1
Strontium	ND		5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:32	1
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 12:32	1
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:32	1
Method: SM 2340B - Total Har	dness (as C	CaCO3) by c	alculation -	Total R	ecoveral	ole			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	ND		3.3	0.55	mg/L			12/14/21 15:14	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
рН	4.3	H H3	0.1	0.1	SU			12/11/21 10:39	1

Client Sample ID: 06169-11 Date Collected: 11/25/21 11:30

Date Received: 12/03/21 09:30

Lab Sample ID: 180-130726-11

Matrix: Water

Method: EPA 9056A - Anions	, Ion Chroma	atography - I	Dissolved		11	-	D	•	D '' F
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DILFac
Bromide	91		0.40	0.21	mg/L			12/09/21 19:12	4
Method: EPA 6020B - Metals	(ICP/MS) - D	issolved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		30	13	ug/L		12/06/21 14:44	12/08/21 12:35	1
Nickel	ND		1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:35	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:35	1
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:35	1
Sodium	ND		500	350	ug/L		12/06/21 14:44	12/08/21 12:35	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:35	1
Barium	ND		10	1.6	ug/L		12/06/21 14:44	12/08/21 12:35	1
Calcium	340	J	500	130	ug/L		12/06/21 14:44	12/08/21 12:35	1
Iron	ND		50	20	ug/L		12/06/21 14:44	12/08/21 12:35	1
Vanadium	ND		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:35	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:35	1
Magnesium	ND		500	83	ug/L		12/06/21 14:44	12/08/21 12:35	1
Copper	7.2		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:35	1
Zinc	83		5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:35	1
Manganese	ND		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:35	1
Chromium	ND		2.0	1.5	ug/L		12/06/21 14:44	12/08/21 12:35	1
Cobalt	ND		0.50	0.13	ug/L		12/06/21 14:44	12/08/21 12:35	1
Molybdenum	ND		5.0	0.61	ug/L		12/06/21 14:44	12/08/21 12:35	1

Client Sample Results

		Client	Батріе г	kesui	[S				
Client: Sirem, div of Geosyntec Cons	sultants		•				J	lob ID: 180-13	0726-1
Project/Site: Keiset, Golder						Lak	Somple I	7. 190 1203	26 11
Date Collected: 11/25/21 11:30 Date Received: 12/03/21 09:30						Lau	o Sample II	J. 160-1307 Matrix:	Water
Method: EPA 6020B - Metals (ICP	P/MS) - D	issolved (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium	2.1	J	5.0	0.93	ug/L		12/06/21 14:44	12/08/21 12:35	1
Boron	ND		80	39	ug/L		12/06/21 14:44	12/08/21 12:35	1
Tin	ND		5.0	0.96	ug/L		12/06/21 14:44	12/08/21 12:35	1
Method: SM 2340B - Total Hardne	ess (as C	CaCO3) by ca	alculation -	Total R	ecovera	ble			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	0.85	J	3.3	0.55	mg/L			12/14/21 15:14	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_рН	4.4	H H3	0.1	0.1	SU			12/11/21 10:40	1
Client Sample ID: 06169-12						Lab	Sample II): 180-1307	26-12
Date Collected: 11/25/21 12:00								Matrix	: Water
Date Received: 12/03/21 09:30									
	Character		Discoluted						
Method: EPA 9056A - Anions, Ion Analyte	Rosult	Oualifier	DISSOIVED	МПІ	Unit	п	Prenared	Analyzod	Dil Fac
Bromide	91		0.40	0.21	ma/l			12/09/21 19:26	4
-			0.10	0.21	iiig/L			12,00,21 10.20	
Method: EPA 6020B - Metals (ICP	P/MS) - D	issolved				_			
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	22	J	30	13	ug/L		12/06/21 14:44	12/08/21 12:39	1
Nickel	ND		1.0	0.34	ug/L		12/06/21 14:44	12/08/21 12:39	1
Cadmium	ND		1.0	0.22	ug/L		12/06/21 14:44	12/08/21 12:39	1
Antimony	ND		2.0	0.38	ug/L		12/06/21 14:44	12/08/21 12:39	1
Sodium	ND		500	350	ug/L		12/06/21 14:44	12/08/21 12:39	1
Beryllium	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:39	1
Barium	ND		10	1.6	ug/L		12/06/21 14:44	12/08/21 12:39	1
Calcium	240	J	500	130	ug/L		12/06/21 14:44	12/08/21 12:39	1
Iron	ND		50	20	ug/L		12/06/21 14:44	12/08/21 12:39	1
Vanadium	ND		1.0	0.99	ug/L		12/06/21 14:44	12/08/21 12:39	1
Silver	ND		1.0	0.18	ug/L		12/06/21 14:44	12/08/21 12:39	1
Magnesium	ND		500	83	ug/L		12/06/21 14:44	12/08/21 12:39	1
Copper	3.5		2.0	0.63	ug/L		12/06/21 14:44	12/08/21 12:39	1
Zinc			5.0	3.2	ug/L		12/06/21 14:44	12/08/21 12:39	1
	20		5.5	o o 	"		10/00/01 11 11	10/00/01 10 00	4
Manganese	ND		5.0	0.87	ug/L		12/06/21 14:44	12/08/21 12:39	1
Manganese Chromium	ND ND		5.0 2.0	0.87 1.5	ug/L ug/L		12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39	1
Manganese Chromium Cobalt	ND ND ND		5.0 2.0 0.50	0.87 1.5 0.13	ug/L ug/L ug/L		12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1
Manganese Chromium Cobalt Molybdenum	ND ND ND ND		5.0 2.0 0.50 5.0	0.87 1.5 0.13 0.61	ug/L ug/L ug/L ug/L		12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1
Manganese Chromium Cobalt Molybdenum Strontium	ND ND ND ND 1.4	J	5.0 2.0 0.50 5.0 5.0	0.87 1.5 0.13 0.61 0.93	ug/L ug/L ug/L ug/L ug/L		12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1 1
Manganese Chromium Cobalt Molybdenum Strontium Boron	ND ND ND ND 1.4 ND	J	5.0 2.0 0.50 5.0 5.0 80	0.87 1.5 0.13 0.61 0.93 39	ug/L ug/L ug/L ug/L ug/L ug/L		12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1 1 1 1
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin	ND ND ND ND ND 1.4 ND	J	5.0 2.0 0.50 5.0 5.0 80 5.0	0.87 1.5 0.13 0.61 0.93 39 0.96	ug/L ug/L ug/L ug/L ug/L ug/L		12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1 1 1 1 1 1
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin Method: SM 2340B - Total Hardne	ND ND ND ND 1.4 ND ND	J CaCO3) by ca	5.0 2.0 0.50 5.0 5.0 80 5.0 80	0.87 1.5 0.13 0.61 0.93 39 0.96 Total R	ug/L ug/L ug/L ug/L ug/L ug/L ecovera	ble	12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39	1 1 1 1 1 1 1
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin Method: SM 2340B - Total Hardne Analyte	ND ND ND 1.4 ND ND Sess (as C Result	J CaCO3) by ca Qualifier	5.0 2.0 0.50 5.0 5.0 80 5.0 80 5.0	0.87 1.5 0.13 0.61 0.93 39 0.96 Total Ro MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ecovera Unit	ble D	12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 Analyzed	1 1 1 1 1 1 1 Dil Fac
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin Method: SM 2340B - Total Hardne Analyte Hardness as calcium carbonate	ND ND ND 1.4 ND ND ND ND ND ND Result 0.60	J CaCO3) by ca Qualifier J	5.0 2.0 0.50 5.0 5.0 80 5.0 alculation - RL 3.3	0.87 1.5 0.13 0.61 0.93 39 0.96 Total Ro MDL 0.55	ug/L ug/L ug/L ug/L ug/L ug/L ecovera Unit mg/L	ble D	12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 Analyzed 12/14/21 15:14	1 1 1 1 1 1 1 1 Dil Fac 1
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin Method: SM 2340B - Total Hardne Analyte Hardness as calcium carbonate General Chemistry - Dissolved	ND ND ND 1.4 ND ND ess (as C Result 0.60	J CaCO3) by ca Qualifier J	5.0 2.0 0.50 5.0 5.0 80 5.0 alculation - <u>RL</u> 3.3	0.87 1.5 0.13 0.61 0.93 39 0.96 Total Ro <u>MDL</u> 0.55	ug/L ug/L ug/L ug/L ug/L ug/L ecovera Unit mg/L	ble D	12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 Prepared	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 Analyzed 12/14/21 15:14	1 1 1 1 1 1 1 1 Dil Fac 1
Manganese Chromium Cobalt Molybdenum Strontium Boron Tin Method: SM 2340B - Total Hardne Analyte Hardness as calcium carbonate General Chemistry - Dissolved Analyte	ND ND ND 1.4 ND ND 855 (as C Result 0.60 Result	J CaCO3) by ca Qualifier J Qualifier	5.0 2.0 0.50 5.0 5.0 80 5.0 alculation - <u>RL</u> 3.3	0.87 1.5 0.13 0.61 0.93 39 0.96 Total Re <u>MDL</u> 0.55	ug/L ug/L ug/L ug/L ug/L ug/L ecovera Unit mg/L	ble D 	12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 12/06/21 14:44 Prepared Prepared	12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 12/08/21 12:39 Analyzed 12/14/21 15:14	1 1 1 1 1 1 1 1 Dil Fac 1 Dil Fac
Job ID: 180-130726-1

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-381392/33 Matrix: Water								•	Clie	nt Sam	ple ID: Method Prep Type: To	l Blank otal/NA
Analysis Batch: 381392												
	MB	MB										
Analyte	Result	Qualifier		RL	MC	DL Unit		<u>D</u>	Pr	repared	Analyzed	Dil Fac
Bromide	ND			0.10	0.05	53 mg/L					12/08/21 23:57	1
Lab Sample ID: LCS 180-381392/32							Cli	ent	San	nnle ID [.]	Lab Control S	Sample
Matrix: Water							011	ent	Jun	inpic iD.	Prep Type: To	otal/NA
Analysis Batch: 381392												
			Spike		LCS L	cs					%Rec.	
Analyte			Added		Result Q	ualifier	Unit		D	%Rec	Limits	
Bromide			10.0		10.2		mg/L		_	102	80 - 120	
									.			
Lab Sample ID: MB 180-381482/7									Cile	nt Sam	pie ID: Method	Blank
Matrix: Water Analysis Batch: 291492											Prep Type: 10	otal/NA
Analysis Datch. 301402	MB	MB										
Analyte	Result	Qualifier		RL	МС)L Unit		D	Pr	epared	Analyzed	Dil Fac
Bromide	ND			0.10	0.05	53 mg/L					12/09/21 08:30	1
						Ũ						
Lab Sample ID: LCS 180-381482/6							Cli	ent	San	nple ID:	: Lab Control S	Sample
Matrix: Water											Prep Type: To	otal/NA
Analysis Batch: 381482											~~ -	
			Spike		LCS L	CS			_	0/ D	%Rec.	
Analyte Bromide			Added		Result Q	ualifier			<u>D</u>	%Rec		
Bioffide			10.0		9.55		mg/∟			93	80 - 120	
												
Lab Sample ID: MB 180-381484/7									Clie	nt Sam	ple ID: Method	Blank
Lab Sample ID: MB 180-381484/7 Matrix: Water									Clie	nt Sam	ple ID: Methoo Prep Type: To	l Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484									Clie	nt Sam	ple ID: Methoo Prep Type: To	l Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484	МВ	МВ							Clie	nt Sam	ple ID: Method Prep Type: To	l Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte	MB Result	MB Qualifier		RL	MC	DL Unit		D	Clie	nt Sam epared	ple ID: Method Prep Type: To 	Blank otal/NA Dil Fac
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide	MB Result ND	MB Qualifier		RL 0.10	ME 0.05	DL Unit		<u>D</u> .	Pr	nt Sam epared	ple ID: Method Prep Type: To <u>Analyzed</u> 12/09/21 14:27	d Blank otal/NA Dil Fac
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide	MB Result ND	MB Qualifier		RL 0.10	ME 0.05	DL Unit			Pr	repared	Pie ID: Method Prep Type: To Analyzed 12/09/21 14:27	I Blank otal/NA Dil Fac 1
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water	MB Result ND	MB Qualifier		RL 0.10	ME 0.05	DL Unit	Cli	<u>D</u>	Pr San	repared	Pie ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To	Dil Fac
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484	MB Result ND	MB Qualifier		RL 0.10	 0.05	DL Unit 53 mg/L	Cli	D	Pr San	nt Sam repared nple ID:	Prep Type: To Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To	Dil Fac 1 Sample
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484	MB Result ND	MB Qualifier		RL 0.10	 0.05	DL Unit mg/L	Cli	D ent	Pr San	nt Sam ^{repared} nple ID:	ple ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec.	Dil Fac Dil Fac 1 Sample otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte	MB Result ND	MB Qualifier	Spike Added	RL 0.10	LCS L Result Q	DL Unit 53 mg/L CS	Cli	<u>D</u>	Pr San	nt Sam repared nple ID: %Rec	ple ID: Method Prep Type: To - Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits	Dil Fac 1 Sample otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide	MB Result ND	MB Qualifier	Spike Added 10.0	RL 0.10	LCS L 9.98	DL Unit 53 mg/L CS Qualifier	Cli <u>Unit</u> mg/L	D ient	Pr San	repared nple ID: <u>%Rec</u> 100 -	Pie ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120	Dil Fac 1 Sample otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide	MB Result ND	MB Qualifier	Spike Added 10.0	RL 0.10	LCS L 9.98	DL Unit 33 mg/L CS cualifier	Cli Unit mg/L	D	Pr San	repared nple ID: <u>%Rec</u> 100	ple ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120	d Blank otal/NA Dil Fac 1 Sample otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30	MB Result ND	MB Qualifier	Spike Added 10.0	RL 0.10	 0.05 LCS L <u>Result</u> 9.98	DL Unit mg/L CS tualifier	Cli Unit mg/L	<u>D</u> .	Pr San D Clie	repared nple ID: <u>%Rec</u> 100 -	ple ID: Method Prep Type: To <u>Analyzed</u> 12/09/21 14:27 Lab Control S Prep Type: To %Rec. <u>Limits</u> 80 - 120 ple ID: Method	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water	MB Result ND	MB Qualifier	Spike Added 10.0	RL 0.10	<u>اللہ اللہ اللہ اللہ اللہ اللہ اللہ اللہ</u>	DL Unit 53 mg/L CS cualifier	Cli Unit mg/L	<u>D</u> . ient	Pr San D_ Clie	repared nple ID: <u>%Rec</u> 100 nt Sam	ple ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697	MB Result ND	MB Qualifier	Spike Added 10.0	RL 0.10	LCS L 9.98	OL Unit 53 mg/L CS Qualifier	Cli Unit mg/L	D .	Pr San D Clie	repared nple ID: <u>%Rec</u> 100 nt Sam	ple ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte	MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10	LCS L Result Q 9.98	DL Unit Timg/L CS Qualifier	Cli Unit mg/L	D ient	Pr San D Clie	repared nple ID: <u>%Rec</u> 100 - nt Sam	Pie ID: Method Prep Type: To 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To Analyzed	d Blank otal/NA Gample otal/NA d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide	MB Result ND MB Result	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10	<u>ME</u> 0.05 LCS L <u>Result</u> Q 9.98	DL Unit mg/L CS tualifier	Cli Unit mg/L	<u>D</u> .	Pr San D Clie	repared nple ID: <u>%Rec</u> 100 - nt Sam	Pie ID: Method Prep Type: To - - 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To -	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10 RL 0.10	<u>МЕ</u> 0.05 LCS L <u>Result Q</u> 9.98 <u>МЕ</u> 0.05	DL Unit 53 mg/L CS CS CS CS CS CS CS CS CS CS	Cli Unit mg/L	<u>D</u> .	Pr San D Clie	repared nple ID: <u>%Rec</u> 100 nt Sam	Pie ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 pie ID: Method Prep Type: To Analyzed 12/10/21 16:22	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide Lab Sample ID: LCS 180-381697/29	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10	LCS L Result Q 9.98	DL Unit 53 mg/L CS Lualifier DL Unit 53 mg/L	Cli <u>Unit</u> mg/L	<u>D</u> ient	Pr San Clie Pr San	repared nple ID: <u>%Rec</u> 100 nt Sam repared	ple ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To Analyzed 12/10/21 16:22 : Lab Control S	d Blank otal/NA Dil Fac 1 Sample otal/NA d Blank otal/NA <u>Dil Fac</u> 1 Sample
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide Lab Sample ID: LCS 180-381697/29 Matrix: Water	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10	<u>LCS L</u> <u>Result</u> 9.98 <u>ME</u> 0.05	DL Unit 53 mg/L CS Lualifier DL Unit mg/L	Cli Unit mg/L	<u>D</u> ent	Pr San D Clie Pr San	repared nple ID: <u>%Rec</u> 100 - nt Sam repared	Pie ID: Method Prep Type: To Analyzed 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 pie ID: Method Prep Type: To Analyzed 12/10/21 16:22 : Lab Control S Prep Type: To	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide Lab Sample ID: LCS 180-381697/29 Matrix: Water Analysis Batch: 381697	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0	RL 0.10 RL 0.10	<u>МЕ</u> 0.05 LCS L <u>Result</u> <u>Q</u> 9.98 <u>МЕ</u> 0.05	DL Unit mg/L CS ualifier	Cli mg/L Cli	<u>D</u> ient <u>D</u>	Pr San D Clie Pr San	repared nple ID: <u>%Rec</u> 100 nt Sam	Ple ID: Method Prep Type: To 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To <u>Analyzed</u> 12/10/21 16:22 : Lab Control S Prep Type: To	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide Lab Sample ID: LCS 180-381697/29 Matrix: Water Analysis Batch: 381697	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Spike	RL 0.10	<u>ME</u> 0.05 LCS L 9.98 <u>ME</u> 0.05	DL Unit TS CS Unit DL Unit Tmg/L CS CS	Cli mg/L Cli	<u>D</u> ient	Pr San D Clie Pr San	repared nple ID: <u>%Rec</u> 100 nt Sam repared nple ID:	Pie ID: Method Prep Type: To 12/09/21 14:27 : Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To <u>Analyzed</u> 12/10/21 16:22 : Lab Control S Prep Type: To %Rec.	d Blank otal/NA
Lab Sample ID: MB 180-381484/7 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: LCS 180-381484/6 Matrix: Water Analysis Batch: 381484 Analyte Bromide Lab Sample ID: MB 180-381697/30 Matrix: Water Analysis Batch: 381697 Analyte Bromide Lab Sample ID: LCS 180-381697/29 Matrix: Water Analysis Batch: 381697 Analyte Demide	MB Result ND MB Result ND	MB Qualifier MB Qualifier	Spike Added 10.0 Spike Added	RL 0.10 RL 0.10	LCS L 9.98 Q LCS L 9.98 Q 0.05	DL Unit TCS CCS CL Unit Transformation CS CS CS CS CS CS	Cli mg/L Cli Unit	<u>D</u> .	Pr San D Clie Pr San	repared nple ID: <u>%Rec</u> 100 nt Sam repared nple ID:	Analyzed Analyzed 12/09/21 14:27 Lab Control S Prep Type: To %Rec. Limits 80 - 120 ple ID: Method Prep Type: To Analyzed 12/10/21 16:22 Lab Control S Prep Type: To %Rec. Limits 20, 420	d Blank otal/NA

10

Job ID: 180-130726-1

10

. ~ .

Lab Sample ID: 180-130726	6-6 MS									Client	Sample II	D: 06	169-06
Matrix: Water										F	Prep Type	: Dis	solved
Analysis Batch: 381392													
	Sample Sa	mple	Spike	MS	MS						%Rec.		
Analyte	Result Qu	ualifier	Added	Result	Qua	alifier	Unit		D	%Rec	Limits		
Bromide	ND		10.0	10.3			mg/L		_	103	80 - 120		
Lab Sample ID: 180-130726 Matrix: Water	5-6 MSD									Client F	Sample II Prep Type	D: 06 : Dis	169-06 solvec
Analysis Batch: 381392			0			_					0/ D		
Analyto	Sample Sa	mple valifior	Spike	MSD	MSI	D	Unit		п	%Pac	%Rec.	חסס	RPD Limit
Bromide			10.0	10.4	Que		ma/l			104	80 120	1	15
Johnac	ND		10.0	10.4			iiig/L			104	00-120		
ethod: EPA 6020B - M	etals (ICP/I	/IS)											
Lab Sample ID: MB 180-381	1123/1-A								Clie	ent Sam	ole ID: Me	thod	Blank
Matrix: Water									P	Prep Typ	e: Total R	lecov	verable
Analysis Batch: 381302											Prep Ba	tch: 3	381123
-	M	B MB											
Analyte	Resu	t Qualifier	RL	I	MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
luminum	N	5			13	ug/L		_	12/0	6/21 14:44	12/07/21 1	9:34	1
lickel	N)	1.0		0.34	ug/L			12/0	6/21 14:44	12/07/21 1	9:34	
admium	N)	1.0		0.22	ug/L			12/0	6/21 14:44	12/07/21 1	9:34	
ntimony	N)	2.0		0.38	ug/L			12/0	6/21 14:44	12/07/21 1	9:34	• • • • • •
Sodium	N)	500		350	ug/L			12/0	6/21 14:44	12/07/21 1	9:34	
Beryllium	N)	1.0		0.18	ug/L			12/0	6/21 14:44	12/07/21 1	9:34	
Barium	N)	10		1.6	ua/L			12/0	6/21 14:44	12/07/21 1	9:34	,
Calcium	N)	500		130	ua/L			12/0	6/21 14:44	12/07/21 1	9:34	
ron	N)	50		20	ua/L			12/0	6/21 14:44	12/07/21 1	9:34	
/anadium	N	- -)	10		0 99	ua/l			12/0	6/21 14.44	12/07/21 1	9.34	
Silver	N)	1.0		0.18	<u>-</u>			12/0	6/21 14.44	12/07/21 1	9.34	
/agnesium	NI	- 1	500		83	ug/L			12/0	6/21 14·44	12/07/21 1	19:34	
Conner	NI	, 	2.0		0.63	ug/L			12/0	6/21 14.44	12/07/21 1	0.04	
Vinc		, ר	5.0		3.0	ug/L			12/0	6/21 14.44 6/21 1 <i>1</i> .44	12/07/21 1	0.34	
			5.0		0.27	ug/L			12/0	6/21 14.44 6/21 11.41	12/07/21 1	0.24	
hanganese		, 	3.0		1 5	ug/L			12/0	6/01 14.44	12/07/21	0.24	,
	INL		2.0		0.10	ug/∟			12/0	0/21 14.44	12/07/21	19.34	
	INL	, ,	0.50		0.13	ug/∟			12/0	0/21 14.44	40/07/04 4	19.34	
		, 	5.0		0.01	ug/L			12/0	0/21 14.44	12/07/21	19.34	
in onuulli			5.0		0.93	ug/L			12/0	0/21 14:44	12/07/24	19.34	1
111	1.1	JJ	5.0		0.90	ug/L			12/0	0/21 14:44	12/07/21	9:34	ļ
ab Sample ID: MB 180-381	1123/1-A								Clie	ent Sam	ole ID: Me	thod	Blank
Matrix: Water									P	Prep Typ	e: Total R	lecov	erable
Analysis Batch: 381477											Prep Ba	tch: 3	381123
	M	B MB											
Analyte	Resu	t Qualifier	RL	I	MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Boron	N)	80		39	ug/L		-	12/0	6/21 14:44	12/08/21 1	11:48	1

Lab Sample ID: LCS 180-381123/2-A		Client Sample ID: Lab Control Samp					trol Sample	
Matrix: Water				F	Prep Ty	pe: Total R	ecoverable	
Analysis Batch: 381302						Prep Bat	tch: 381123	
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	4930		ug/L		99	80 - 120	

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Method: EPA 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-381123/2-A Matrix: Water

Analysis Batch: 381302							Prep Batch: 381123
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Nickel	500	500		ug/L		100	80 - 120
Cadmium	500	498		ug/L		100	80 - 120
Antimony	250	238		ug/L		95	80 - 120
Sodium	25000	26100		ug/L		104	80 - 120
Beryllium	500	485		ug/L		97	80 - 120
Barium	1000	989		ug/L		99	80 - 120
Calcium	25000	26800		ug/L		107	80 - 120
Iron	5000	5080		ug/L		102	80 - 120
Vanadium	500	505		ug/L		101	80 - 120
Silver	250	247		ug/L		99	80 - 120
Magnesium	25000	25200		ug/L		101	80 - 120
Copper	500	503		ug/L		101	80 - 120
Zinc	250	249		ug/L		100	80 - 120
Manganese	500	496		ug/L		99	80 - 120
Chromium	500	501		ug/L		100	80 - 120
Cobalt	500	515		ug/L		103	80 - 120
Molybdenum	500	507		ug/L		101	80 - 120
Strontium	500	486		ug/L		97	80 - 120
Tin	1000	984		ug/L		98	80 - 120

Lab Sample ID: LCS 180-381123/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 381477 **Prep Batch: 381123** Spike LCS LCS %Rec. Added Limits Result Qualifier Analyte Unit D %Rec Boron 1250 1140 ug/L 91 80 - 120 Lab Sample ID: MB 180-381125/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 381477 Prep Batch: 381125 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Boron ND 80 39 ug/L 12/06/21 14:46 12/08/21 10:10 1 Lab Sample ID: LCS 180-381125/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 381477 **Prep Batch: 381125** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1250 Boron 1120 ug/L 90 80 - 120 Method: EPA 9040C - pH

Lab Sample ID: LCS 180-381831/1 Matrix: Water Analysis Batch: 381831				Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA
	Spike	LCS	LCS				%Rec.
Analyte	Added 7.00	Result 7.0	Qualifier	Unit SU	<u>D</u>	%Rec 100	Limits

11 12 13

Analysis Batch: 381392

HPLC/IC

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-1	06169-01	Dissolved	Water	EPA 9056A	
180-130726-3	06169-03	Dissolved	Water	EPA 9056A	
180-130726-4	06169-04	Dissolved	Water	EPA 9056A	
180-130726-5	06169-05	Dissolved	Water	EPA 9056A	
180-130726-6	06169-06	Dissolved	Water	EPA 9056A	
180-130726-7	06169-07	Dissolved	Water	EPA 9056A	
MB 180-381392/33	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-381392/32	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-130726-6 MS	06169-06	Dissolved	Water	EPA 9056A	
180-130726-6 MSD	06169-06	Dissolved	Water	EPA 9056A	

Analysis Batch: 381482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-381482/7	Method Blank	Total/NA	Water	EPA 9056A EPA 9056A	
LCS 180-381482/6	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 381484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-2	06169-02	Dissolved	Water	EPA 9056A	
180-130726-10	06169-10	Dissolved	Water	EPA 9056A	
180-130726-11	06169-11	Dissolved	Water	EPA 9056A	
180-130726-12	06169-12	Dissolved	Water	EPA 9056A	
MB 180-381484/7	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-381484/6	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 381697

Lab Sample ID 180-130726-9	Client Sample ID 06169-09	Prep Type Dissolved	Matrix Water	EPA 9056A	Prep Batch
MB 180-381697/30	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-381697/29	Lab Control Sample	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 381123

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-130726-2	06169-02	Dissolved	Water	3005A	
180-130726-3	06169-03	Dissolved	Water	3005A	
180-130726-4	06169-04	Dissolved	Water	3005A	
180-130726-5	06169-05	Dissolved	Water	3005A	
180-130726-6	06169-06	Dissolved	Water	3005A	
180-130726-7	06169-07	Dissolved	Water	3005A	
180-130726-8	06169-08	Dissolved	Water	3005A	
180-130726-9	06169-09	Dissolved	Water	3005A	
180-130726-10	06169-10	Dissolved	Water	3005A	
180-130726-11	06169-11	Dissolved	Water	3005A	
180-130726-12	06169-12	Dissolved	Water	3005A	
MB 180-381123/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-381123/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

QC Association Summary

Job ID: 180-130726-1

11 12 13

Metals

Prep Batch: 381125

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-130726-1	06169-01	Dissolved	Water	3005A	
MB 180-381125/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-381125/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
Analysis Batch: 381	302				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-381123/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	381123
LCS 180-381123/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	381123
Analysis Batch: 381	477				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-1	06169-01	Dissolved	Water	EPA 6020B	381125
180-130726-2	06169-02	Dissolved	Water	EPA 6020B	381123
180-130726-3	06169-03	Dissolved	Water	EPA 6020B	381123
180-130726-4	06169-04	Dissolved	Water	EPA 6020B	381123
180-130726-5	06169-05	Dissolved	Water	EPA 6020B	381123
180-130726-6	06169-06	Dissolved	Water	EPA 6020B	381123
180-130726-7	06169-07	Dissolved	Water	EPA 6020B	381123
180-130726-8	06169-08	Dissolved	Water	EPA 6020B	381123
180-130726-9	06169-09	Dissolved	Water	EPA 6020B	381123
180-130726-10	06169-10	Dissolved	Water	EPA 6020B	381123
180-130726-11	06169-11	Dissolved	Water	EPA 6020B	381123
180-130726-12	06169-12	Dissolved	Water	EPA 6020B	381123
MB 180-381123/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	381123
MB 180-381125/1-A	Method Blank	Total Recoverable	Water	EPA 6020B	381125
LCS 180-381123/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	381123
LCS 180-381125/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020B	381125

Analysis Batch: 382224

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-1	06169-01	Total Recoverable	Water	SM 2340B	
180-130726-2	06169-02	Total Recoverable	Water	SM 2340B	
180-130726-3	06169-03	Total Recoverable	Water	SM 2340B	
180-130726-4	06169-04	Total Recoverable	Water	SM 2340B	
180-130726-5	06169-05	Total Recoverable	Water	SM 2340B	
180-130726-6	06169-06	Total Recoverable	Water	SM 2340B	
180-130726-7	06169-07	Total Recoverable	Water	SM 2340B	
180-130726-8	06169-08	Total Recoverable	Water	SM 2340B	
180-130726-9	06169-09	Total Recoverable	Water	SM 2340B	
180-130726-10	06169-10	Total Recoverable	Water	SM 2340B	
180-130726-11	06169-11	Total Recoverable	Water	SM 2340B	
180-130726-12	06169-12	Total Recoverable	Water	SM 2340B	

General Chemistry

Analysis Batch: 381831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-1	06169-01	Dissolved	Water	EPA 9040C	
180-130726-2	06169-02	Dissolved	Water	EPA 9040C	
180-130726-3	06169-03	Dissolved	Water	EPA 9040C	
180-130726-4	06169-04	Dissolved	Water	EPA 9040C	

QC Association Summary

Job ID: 180-130726-1

General Chemistry (Continued)

Analysis Batch: 381831 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-130726-5	06169-05	Dissolved	Water	EPA 9040C	
180-130726-6	06169-06	Dissolved	Water	EPA 9040C	
180-130726-7	06169-07	Dissolved	Water	EPA 9040C	
180-130726-8	06169-08	Dissolved	Water	EPA 9040C	
180-130726-9	06169-09	Dissolved	Water	EPA 9040C	
180-130726-10	06169-10	Dissolved	Water	EPA 9040C	
180-130726-11	06169-11	Dissolved	Water	EPA 9040C	
180-130726-12	06169-12	Dissolved	Water	EPA 9040C	
LCS 180-381831/1	Lab Control Sample	Total/NA	Water	EPA 9040C	

Eurofins TestAmerica, Pittsburgh

Chain of Custody Record

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468

Client Information	Sampler:	-Davies G	b PM: amber, C	arrie L		Carrier Tracking No(s):	COC No: 180-75250-1449	6.2
Client Contact: Dr. Brent Pautler	Phone: 250-418-0	378 5	Mail: arrie Gam	ber@Eurofinse	t com	State of Origin:	da	Page: Page Vof 2	
Company:	0.50	PWSID:	anie.oan			12 cure		Job #:	
Sirem, div of Geosyntec Consultants Address:	Due Date Requested:	1 1 1 -			Analysis Rec	uested		Preservation Cod	es:
130 Stone Rd West	Standard Pos	+ shipping	- 18					A - HCL	M - Hexane
Guelph	Doma (adays)						B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: ON. N1G 3Z2	Compliance Project: A Yes	No	- 18	6				D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO #:			20				F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
519-515-0837(Tel) Email:	BR0457 WO #:		- No	40				H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone
bpautler@siremlab.com	Drainat #:		r No)	30			ers	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Golder	18022677		le (Y	2			ntain	L - EDA	Z - other (specify)
Site: KELSET, Goldes	SSOW#:		Samp ASD (Y	Geo			of co	Other:	
		Sample Matrix	tered MS/N	P.C			Imbei		
	Sample	Type (W=water, S=solid, (C=Comp	d Fil	SIS			al N	-	
Sample Identification	Sample Date Time	G=grab) BT=Tissue, A=A	Air) H	900			Tot	Spe	
		Preservation Code:		DN					
06169-01	24/11/2021 13:45	CN	YN	XX			2		
06169-02	24/11/2021 14:25	CW	YN	XX	_		2		
06169-03	15:00	CW	YN	XX			2		ody
06169-04	15:40	CW	YN	XX			2		Cust
06169-05	16:05	CW	YN	XX			a		u of
06169-06	24/11/2021 17:00	CW	YN	XX			2		Chai
06169-07	25/11/202109:15	Ciu	YN	XX			2		726
06169-08	1 09-545	CW	YN	XXII			2		-130
06169-09	10:30	CW	YN	XX			2		180
06169 - 10	10:50	CW	YN	XX			2		
06169 - 11	15/1/2021 11:30	CW	YN	XX			2		
Possible Hazard Identification		-	Sar	nple Disposal	(A fee may be a	ssessed if samp	les are retaine	d longer than 1	month)
Non-Hazard Flammable Skin Irritant Pois	on B Unknown F	Radiological	L	Return To C	lient	isposal By Lab	Archi	ive For	Months
Deliverable Requested. 1, 11, 111, 117, Other (specify) Standa	d for Sike	M	20	POCT to	STREM +	Golder	(AFas	stegoli	les.com)
Empty Kit Relinquished by:	Date:		Time:	Descrived from		Method of Ship	ment: Fer	JEX U	Composition
Robyn Chatwin-Davies Rolynd	Nov29 2021 1	1:00 Gold	e la	Received by:	wato			3-21	E TAPA
Relinquished by:	Date/Time:	Company		Received by:		Dat	e/Time:	930	Company
Relinquished by:	Date/Time:	Company		Received by:		Dat	e/Time:	~	Company
Custody Seals Intact: Custody Seal No.:	L , ,,, ,			Cooler Temperatur	e(s) ^o C and Other Rer	narks:			

Ver: 06/08/202/20/2021

Eurofins TestAmerica, Pittsburgh

Chain of Custody Record

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468

Client Information	Sampler:	n-Davies	Lab PM Gamb	er, Carrie L		Carrier Tracking No(s):	COC №: 180-75250-14496.1		
Client Contact:	Phone:	0378	E-Mail: Carrie	Gamber@Eurofins	set com	State of Origin:		Page: Page 1 of 2		
Company:		PWSID:	Joanne					Job #:		
Sirem, div of Geosyntec Consultants	Due Date Requested:	1 1.			Analysis Re	quested		Preservation Co	des:	
130 Stone Rd West	Standard	post ship	pm	100				A - HCL	M - Hexane	
City: Guelph	QOQLOOLC 1	The Days						B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip:	Compliance Project: A Ye	s A No						D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
Phone:	PO #:		_	BL				F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4	
519-515-0837(Tel)	BR0457			B 2 B				H - Ascorbic Acid I - Ice	T - TSP Dodecahydrate U - Acetone	
opautler@siremlab.com	WO #.						S	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Project Name: Golder	Project #: 18022677		2	A solution			taine	L - EDA	Z - other (specify)	
Site: KELSET, Golder	SSOW#:			Se ved			of con	Other:		
		Sample	Matrix				nber			
		Туре	(W=water, S=solid,				Nur			
Sample Identification	Sample Date Time	G=grab) BT=)=waste/oil, Tissue, A=Air)				Tota	Special Ir	structions/Note:	
		Preservation	n Code:	X D N					-	
06169-12	25/11/2021 12:0		Ŵ	INXX			2			
/		_	/							
6		/								
									1	
		1/								
		X								
/										
Possible Hazard Identification				Sample Disposa	al (A fee may be a	assessed if sampl	es are retain	ed longer than 1	month)	
Non-Hazard Flammable Skin Irritant	Poison B Unknown	Radiological		Return To	Client	Disposal By Lab	Arch	ive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify) \lesssim FU	indoved for Sir	EM		Special Instructio	SIREM +	Golder (AFast	· @ gold	ler.com)	
mpty Kit Relinquished by:	Date:		Т	ïme: ¹		Method of Shipm	nent: Fed	EXO		
alinguished by: Koby Chatwin-Davies Rollyng	Date/Time: Nev 29 2021	11:00 G	older	- Received by:) wa	ton Date	Time: 2	3.21	Company APC	
Relinquished by:	Date/Time:	Con	npany	Received by:		Date	/Time:	930	Company	
elinquished by:	Date/Time:	Con	npany	Received by:		Date	/Time:	i	Company	
Custody Seals Intact: Custody Seal No.:	<u>I</u>			Cooler Temperat	ture(s) °C and Other Re	emarks:			1	
Δ Yes Δ No										

12/20/2021

Login Sample Receipt Checklist

Client: Sirem, div of Geosyntec Consultants

Login Number: 130726 List Number: 1 Creator: Watson, Debbie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 180-130726-1

List Source: Eurofins TestAmerica, Pittsburgh

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) 219-800 BURRARD ST VANCOUVER, BC V6Z 0B9 604-671-1831 **ATTENTION TO: Alexis Fast** PROJECT: 21455123-3000 AGAT WORK ORDER: 21V836225 WATER ANALYSIS REVIEWED BY: Dana Solari, Lab Reporter DATE REPORTED: Dec 03, 2021 PAGES (INCLUDING COVER): 6 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

otes	
claimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 6

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21V836225 PROJECT: 21455123-3000 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Alexis Fast

SAMPLED BY:

				vva	CI Analysis	- DI33. 010					
DATE RECEIVED: 2021-11-26								I	DATE REPORT	ED: 2021-12-03	
		SAMPLE DES	CRIPTION:	06169-01	06169-02	06169-03	06169-04	06169-05	06169-06	06169-07	06169-08
		SAMPLE TYPE:		Water							
		DATE	SAMPLED:	2021-11-24 13:45	2021-11-24 14:25	2021-11-24 15:00	2021-11-24 15:40	2021-11-24 16:05	2021-11-24 17:00	2021-11-25 09:15	2021-11-25 09:45
Parameter	Unit	G / S	RDL	3260521	3260523	3260524	3260525	3260526	3260527	3260528	3260529
Dissolved Chromium (VI)	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
		SAMPLE DES	CRIPTION:	06169-09	06169-10	06169-11	06169-12				
		SAM	SAMPLE TYPE:		Water	Water	Water				
		DATE	SAMPLED:	2021-11-25 10:30	2021-11-25 10:50	2021-11-25 11:30	2021-11-25 12:00				
Parameter	Unit	G / S	RDL	3260530	3260531	3260532	3260533				
Dissolved Chromium (VI)	mg/L		0.01	<0.01	<0.01	<0.01	<0.01				

Water Analysis - Diss Cr6

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

). Solari

Certified By:

Page 2 of 6

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V836225

PROJECT: 21455123-3000

ATTENTION TO: Alexis Fast

SAMPLING SITE:

SAMPLED BY:

	Water Analysis														
RPT Date: Dec 03, 2021			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	d Measured	Acceptat asured Limits		Recoverv	Acceptable Limits		Recovery	Acce	ptable mits
		Id					value	Lower	Upper	Lower Upper	Lower	Upper			
Water Analysis - Diss. Cr6 Dissolved Chromium (VI)	3266404		<0.01	<0.01	NA	< 0.01	80%	70%	130%	84%	80%	120%	79%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

D. Soloun

Page 3 of 6

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

PROJECT: 21455123-3000

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21V836225

ATTENTION TO: Alexis Fast

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	•		
Dissolved Chromium (VI)	WATR-0300	EPA SW 846-6010B, SM 3030B	SPECTROPHOTOMETER

CAL CAL	dor		CH	IAIN	OF CL	JSTOD	Y RE	COR	D/ANAL	YS	IS R	EQL	JEST			No.	061	69 page _ of _
TASSO	ciates			Proje	ct Number:	214	5513	3	- 3000)			Lab	oratory Na	me:	G	+T	
200 – 2920 Virtual Way Vancouver, British Colu	/ umbia, Canac	da V5M 00	C4	Short	Title: ELSE	T tress 1:	3	Coldor	Golder Aleo	Contac	et: Fast		Add 8 (ress: :00 G	lent	yen	POYKU	ay Burnaby
Telephone (604) 296-4	200 Fax (6	604) 298-5	5253	A	Fast	@g	older.cor	n RCh	atuin M	uies	@go	lder.c	om 6	phone/Fax	3 80	18	Conta	ct: /
Office Name:	VICT	TOR	A		EQu	IS Facility (IS upload:	ode: <u>2</u>	2966	6564				A	nalvses R	equirer		26U	ૢૺૺૢૢૢૢૢૢ ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
Turnaround Time: Criteria: A CSR	24 hr	ME	□ 48 hr □ BC W	ater Quali	ty 72 hr	Other	X	Regular (5 Days)	ŝ					June		()	
Note: Final Reports	to be issued	by e-mai			Quote No	D.: BILL TA	to P.	5891	122	ontaine	+ 102	Z					AT above	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of C	lexavalla	dissibution					tUSH (Select T	Remarks (over)
06169 - 01 P	521-02	(/	Gw	24/11/21	13:45	/	N				~			-		<u> </u>	0.25 No. 11
06169 -02 8	321-01	1	/	GW	21/11/21	14:25		N			$\hat{\mathbf{v}}$	_						U-25ML NOUT
C469 - 03 F	5203	1	/	Gw	24/11/21	(5:0)	/	NI	1		$\widehat{\mathbf{X}}$							
06169 - 04 P	W21-01			Gw	2-4/11/21	15:40	-	N	1	Ť	$\overline{\mathbf{X}}$							
06169 - 05 9	521-04	١	/	GUT	4/11/11	Ibios	1	N/	1	1	$\overline{\mathbf{X}}$							
06169 - 06 P	W21-03	1	/	GW	24/4/21	19 60	1	Ň		1	Ŷ						-	1
06169 - 07 P	52107	1	1	GW	25/why	09:15	-	N		1	X							
06169 - 08 P	521-05	1	1	GW	2.5/10/21	79:45		L.		1					-			11
06169 - 09 3	21-06	1	/	GW	25/11/21	0:30		N	1	I.	$\overline{\mathbf{X}}$							Ir
06169 - 10	321-01		1	GW	5/11/21	10:50	/	MIT	3	(X							11
0669 - 11	121-02		/	SW	25/11/21	1.30	12	AND TO	3 /	1	X							1/
06169 - 12	321-03	1	/ (SWF	5/11/21	12:00	1	TB	/)	X							31
Sampler's Signature:	Colup	d	Relinguis	shed by: S	Signature	en	Company	or	Date 25 No	120	21	Time	. 20	Receive	d by: S	lignature	co	mpany
Shipped w/ ice	packs	0	Method o		nt	0	Waybill N	lo.:	-(A] 100		Recei	ived for	Lab by:		Dat	e		Time
samples prese	ived		Shipped	E Ca	mert	ichoca	Shipmen Seal Inta	t Conditio ct:	n.		Temp	(°C)	Cooler o	pened by:	Dat	e		Time

WHITE: Golder Copy YELLOW: Lab Copy

() (SA	AGAT Laboratories	8:32

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

RECEIVING BASICS: Received From:A <	Waybill #: <626387.
SAMPLE QUANTITIES: Coolers: Containers	
TIME SENSITIVE ISSUES: Earliest Date Sampled:	ALREADY EXCEEDED? Yes No
NON-CONFORMANCES: B temperatures of samples* and avera sample ID's) *use jars when available (1) $5 + 5 + 6 = 5 \circ C (2) + 1000$ Vas ice or ice pack present: Yes ntegrity Issues:	age of each cooler: (record differing temperatures on the CoC next to +=°C (3)++ _=°C (4)++ _=°C s No
ccount Project Manager:	have they been notified of the above issues: Yes No
/hom spoken to:	Date and Time:
DDITIONAL NOTES:	stody seal intact

Revision Date: July 9, 2014

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) 219-800 BURRARD ST VANCOUVER, BC V6Z 0B9 604-671-1831 **ATTENTION TO: Robin Chatwin-Davies** PROJECT: 21455123 AGAT WORK ORDER: 21C832945 WATER ANALYSIS REVIEWED BY: Jennifer Liu, Analyst DATE REPORTED: Nov 30, 2021 PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

es	
aimer	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Iember of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

DATE REPORTED: 2021-11-30

SAMPLED BY:

British Columbia CSR - Omnibus Dissolved Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Elutriate CTL Lab Water 2021-11-19 15:30	Elutriate Site CTL Water 2021-11-19 15:30	Elutriate 1.6% Water 2021-11-19 15:30	Elutriate 3.2% Water 2021-11-19 15:30	Elutriate 100% Water 2021-11-19 15:30	
Parameter	Unit	G/S RDL	3234004	3234005	3234006	3234007	3234013	
Dissolved Aluminum	µg/L	15	22	19	17	<15	1100	
Dissolved Antimony	µg/L	1	<1	<1	<1	<1	<1	
Dissolved Arsenic	µg/L	1	1	1	1	<1	1	
Dissolved Barium	µg/L	50	<50	<50	<50	<50	<50	
Dissolved Beryllium	µg/L	1	<1	<1	<1	<1	<1	
Dissolved Boron	µg/L	10	<10	16	18	19	121	
Dissolved Cadmium	μg/L	0.08	<0.08	<0.08	<0.08	<0.08	0.17	
Dissolved Calcium	µg/L	300	45800	16900	17100	16700	9600	
Dissolved Chromium	µg/L	1	<1	<1	<1	<1	1	
Dissolved Cobalt	µg/L	1	<1	<1	<1	<1	<1	
Dissolved Copper	µg/L	1	<1	4	4	3	14	
Dissolved Iron	µg/L	100	<100	<100	<100	<100	594	
Dissolved Lead	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	0.9	
Dissolved Lithium	µg/L	1	4	<1	<1	<1	2	
Dissolved Magnesium	µg/L	200	15200	5470	5560	5470	4930	
Dissolved Manganese	µg/L	1	<1	<1	3	4	5	
Dissolved Mercury	µg/L	0.025	<0.025	<0.025	<0.025	<0.025	<0.025	
Dissolved Molybdenum	µg/L	1	<1	2	2	2	3	
Dissolved Nickel	µg/L	3	<3	<3	<3	<3	<3	
Dissolved Potassium	ug/L	600	2560	1040	1200	1070	2760	
Dissolved Selenium	µg/L	2.5	<2.5	<2.5	<2.5	<2.5	<2.5	
Dissolved Silver	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Sodium	µg/L	600	5520	12700	13200	13300	27100	
Dissolved Strontium	µg/L	1	418	87	69	83	67	
Dissolved Thallium	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Dissolved Tin	µg/L	0.5	4.4	<0.5	<0.5	<0.5	<0.5	
Dissolved Titanium	µg/L	2	<2	<2	<2	<2	46	
Dissolved Uranium	µg/L	1	<1	<1	<1	<1	<1	

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

DATE REPORTED: 2021-11-30

SAMPLED BY:

British Columbia CSR - Omnibus Dissolved Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

					-			
				Elutriate CTL	Elutriate Site			
		SAMPLE DES	CRIPTION:	Lab	CTL	Elutriate 1.6%	Elutriate 3.2%	Elutriate 100%
		SAM	PLE TYPE:	Water	Water	Water	Water	Water
		DATE	SAMPLED:	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30
Parameter	Unit	G/S	RDL	3234004	3234005	3234006	3234007	3234013
Dissolved Vanadium	µg/L		1	<1	<1	<1	<1	3
Dissolved Zinc	µg/L		10	<10	14	11	11	15
Lab Filtration Performed				complete	complete	complete	complete	complete
Dissolved Bismuth	mg/L		0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Dissolved Silicon	mg/L		0.032	1.51	3.93	4.10	3.78	6.86
Dissolved Sulfur	mg/L		0.3	19.3	4.9	5.0	4.9	5.4
Dissolved Zirconium	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

3234004-3234013 < - Values refer to Method Detection Limit.

Hardness is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

DATE REPORTED: 2021-11-30

SAMPLED BY:

British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

		SAMPLE DESCRIPTION: SAMPLE TYPE:	Elutriate CTL Lab Water	Elutriate Site CTL Water	Elutriate 1.6% Water	Elutriate 3.2% Water	Elutriate 6.5% Water		Elutriate 12% Water	Elutriate 25% Water
		DATE SAMPLED:	15:30	15:30	15:30	15:30	15:30		15:30	15:30
Parameter	Unit	G/S RDL	3234004	3234005	3234006	3234007	3234008	RDL	3234010	3234011
Total Aluminum	ug/L	4	19	168	657	1140	1840	100	2790	5910
Total Antimony	ug/L	1	<1	<1	<1	<1	<1	1	<1	<1
Total Arsenic	ug/L	1	<1	<1	1	<1	1	1	3	4
Total Barium	ug/L	50	<50	<50	<50	<50	<50	50	<50	<50
Total Beryllium	ug/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5
Total Boron	ug/L	10	<10	14	15	18	20	10	26	35
Total Cadmium	ug/L	0.016	<0.016	0.045	0.145	0.228	0.526	0.016	1.08	1.78
Total Calcium	ug/L	300	60900	23700	23200	23500	23600	300	24200	22300
Total Chromium	ug/L	0.5	<0.5	0.6	1.9	2.6	3.7	0.5	7.8	13.8
Total Cobalt	ug/L	0.9	<0.9	<0.9	<0.9	<0.9	<0.9	0.9	1.3	2.3
Total Copper	ug/L	0.8	<0.8	6.1	5.7	7.2	8.8	0.8	14.5	22.8
Total Iron	ug/L	100	<100	371	791	1290	2250	100	4320	7870
Total Lead	ug/L	0.1	0.2	0.4	0.9	1.5	2.8	0.1	5.3	9.6
Total Lithium	ug/L	1	4	<1	<1	1	2	1	3	5
Total Magnesium	ug/L	200	18500	6840	6810	7030	7220	200	7660	810
Total Manganese	ug/L	5	<5	17	29	48	91	5	178	326
Total Mercury	ug/L	0.025	<0.025	<0.025	<0.025	<0.025	<0.025	0.025	<0.025	0.025
Total Molybdenum	ug/L	1	<1	2	2	2	2	1	2	3
Total Nickel	ug/L	3	<3	<3	<3	3	<3	3	5	8
Total Potassium	ug/L	600	3260	1210	1230	1400	1460	600	1680	2070
Total Selenium	ug/L	0.5	<0.5	<0.5	<0.5	0.8	0.8	0.5	<0.5	1.6
Total Silver	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1
Total Sodium	ug/L	600	7150	16500	16500	17400	18100	600	20100	21300
Total Strontium	ug/L	1	381	81	72	71	67	1	82	90
Total Thallium	ug/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
Total Tin	ug/L	0.2	4.6	<0.2	<0.2	<0.2	0.2	0.2	0.3	0.4
Total Titanium	ug/L	1	<1	8	27	47	66	1	92	155
Total Uranium	ug/L	1	<1	<1	<1	<1	<1	1	<1	<1

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

DATE REPORTED: 2021-11-30

SAMPLED BY:

British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

				Elutriate CTL	Elutriate Site						
		SAMPLE DES	CRIPTION:	Lab	CTL	Elutriate 1.6%	Elutriate 3.2%	Elutriate 6.5%		Elutriate 12%	Elutriate 25%
		SAM	IPLE TYPE:	Water	Water	Water	Water	Water		Water	Water
		DATE	SAMPLED:	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30		2021-11-19 15:30	2021-11-19 15:30
Parameter	Unit	G/S	RDL	3234004	3234005	3234006	3234007	3234008	RDL	3234010	3234011
Total Vanadium	ug/L		1	<1	2	4	3	5	1	8	14
Total Zinc	ug/L		10	<10	27	20	35	31	10	52	77
Total Bismuth	mg/L		0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Total Silicon	mg/L		0.1	1.9	5.2	5.7	6.3	7.2	0.3	11.2	16.2
Total Sulfur	mg/L		0.3	24.8	6.5	6.3	6.2	6.1	0.3	6.6	6.5
Total Zirconium	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123

AGAT CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

Laboratories

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

SAMPLED BY:

British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

	S	AMPLE DESCRIPTION	Elutriate 50%	Elutriate 100%	
	C		Water	Water	
		DATE SAMPLED:	2021-11-19	2021-11-19	
			15:30	15:30	
Parameter	Unit	G/S RDL	3234012	3234013	
Total Aluminum	ug/L	100	11700	22700	
Total Antimony	ug/L	1	<1	<1	
Total Arsenic	ug/L	1	7	9	
Total Barium	ug/L	50	<50	63	
Total Beryllium	ug/L	0.5	<0.5	<0.5	
Total Boron	ug/L	10	53	94	
Total Cadmium	ug/L	0.016	3.95	7.82	
Total Calcium	ug/L	300	20800	18200	
Total Chromium	ug/L	0.5	27.3	55.2	
Total Cobalt	ug/L	0.9	4.5	9.9	
Total Copper	ug/L	0.8	43.8	77.0	
Total Iron	ug/L	100	16900	33500	
Total Lead	ug/L	0.1	12.2	25.3	
Total Lithium	ug/L	1	9	17	
Total Magnesium	ug/L	200	9080	11800	
Total Manganese	ug/L	5	647	1310	
Total Mercury	ug/L	0.025	0.030	0.071	
Total Molybdenum	ug/L	1	3	3	
Total Nickel	ug/L	3	18	31	
Total Potassium	ug/L	600	2890	4480	
Total Selenium	ug/L	0.5	<0.5	1.7	
Total Silver	ug/L	0.1	0.2	0.5	
Total Sodium	ug/L	600	25200	34800	
Total Strontium	ug/L	1	90	97	
Total Thallium	ug/L	0.1	<0.1	<0.1	
Total Tin	ug/L	0.2	0.9	1.3	
Total Titanium	ug/L	25	268	413	
Total Uranium	ug/L	1	<1	1	
Total Vanadium	ug/L	1	28	43	

Certified By:

TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

DATE REPORTED: 2021-11-30

2910 12TH STREET NE

CALGARY, ALBERTA

CANADA T2E 7P7

Results relate only to the items tested. Results apply to samples as received.

AGAT WORK ORDER: 21C832945 PROJECT: 21455123

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

Laboratories

ATTENTION TO: Robin Chatwin-Davies SAMPLED BY:

DATE REPORTED: 2021-11-30

SAMPLING SITE:

British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)

DATE RECEIVED: 2021-11-19

	S/	AMPLE DESC	RIPTION:	Elutriate 50%	Elutriate 100%
		SAMP	'LE TYPE:	Water	Water
		DATE S	AMPLED:	2021-11-19 15:30	2021-11-19 15:30
Parameter	Unit	G/S	RDL	3234012	3234013
Total Zinc	ug/L		10	143	254
Total Bismuth	mg/L		0.001	<0.001	<0.001
Total Silicon	mg/L		0.3	28.0	45.2
Total Sulfur	mg/L		0.3	6.6	7.4
Total Zirconium	mg/L		0.01	<0.01	<0.01

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

AGAT

3234004-3234013 < - Values refer to Method Detection Limit.

Hardness is a calculated parameter. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

ATTENTION TO: Robin Chatwin-Davies

SAMPLING SITE:

SAMPLED BY	

Water Analysis - DOC												
DATE RECEIVED: 2021-11-19		DATE REPORTED: 2021-11-30										
				Elutriate CTL	Elutriate Site							
		SAMPLE DES	CRIPTION:	Lab	CTL	Elutriate 1.6%	Elutriate 3.2%					
		SAM	PLE TYPE:	Water	Water	Water	Water					
		DATE	SAMPLED:	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30	2021-11-19 15:30					
Parameter	Unit	G / S	RDL	3234004	3234005	3234006	3234007					
Dissolved Organic Carbon (DOC)	mg/L		1	1	7	7	8					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

SAMPLED BY:

Water Analysis - Total & Diss. Cr6+										
DATE RECEIVED: 2021-11-19 DATE REPORTED: 2021-11-30										
				Elutriate CTL	Elutriate Site					
		SAMPLE DES	CRIPTION:	Lab	CTL					
		SAM	PLE TYPE:	Water	Water					
		DATE	SAMPLED:	2021-11-19 15:30	2021-11-19 15:30					
Parameter	Unit	G / S	RDL	3234004	3234005					
Hexavalent Chromium	mg/L		0.01	<0.01	<0.01					
Dissolved Chromium (VI)	mg/L		0.01	< 0.01	<0.01					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

SAMPLED BY:

Water Analysis - Total Cr6+											
DATE RECEIVED: 2021-11-19								[DATE REPORT	ED: 2021-11-30	
		SAMPLE DES	CRIPTION:	Elutriate 1.6%	Elutriate 3.2%	Elutriate 6.5%	Elutriate 12%	Elutriate 25%	Elutriate 50%	Elutriate 100%	
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2021-11-19 15:30							
Parameter	Unit	G/S	RDL	3234006	3234007	3234008	3234010	3234011	3234012	3234013	
Hexavalent Chromium	mg/L		0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 21C832945 PROJECT: 21455123 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC)

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

SAMPLED BY:

					N N	Mater Analy	ysis - pri					
DATE F	RECEIVED: 2021-11-19								I	DATE REPORT	ED: 2021-11-30	
					Elutriate CTL	Elutriate Site						
			SAMPLE DESC	CRIPTION:	Lab	CTL	Elutriate 1.6%	Elutriate 3.2%	Elutriate 6.5%	Elutriate 12%	Elutriate 25%	Elutriate 50%
			SAM	PLE TYPE:	Water							
			DATES	SAMPLED:	2021-11-19 15:30							
	Parameter	Unit	G / S	RDL	3234004	3234005	3234006	3234007	3234008	3234010	3234011	3234012
pН		pH Units		N/A	8.31	8.03	8.01	8.04	7.99	7.97	7.94	7.91
			SAMPLE DES		Elutriate 100%							
			DATE S	SAMPLED:	2021-11-19 15:30							
	Parameter	Unit	G / S	RDL	3234013							
рН		pH Units		N/A	7.80							

Water Analysis - nH

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Page 12 of 19

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

ATTENTION TO: Robin Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Water Analysis

								, mary ere							
RPT Date: Nov 30, 2021			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce	ptable mits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
British Columbia CSR - Omnik	ous Dissolved Me	etals plu	us Mercu	ry (ug/L)											
Dissolved Aluminum	3128440		<15	<15	NA	< 4	94%	70%	130%	90%	80%	120%	100%	70%	130%
Dissolved Antimony	3128440		<1	<1	NA	< 1	102%	70%	130%	93%	80%	120%	93%	70%	130%
Dissolved Arsenic	3128440		3	3	NA	< 1	108%	70%	130%	85%	80%	120%	90%	70%	130%
Dissolved Barium	3128440		<50	<50	NA	< 50	75%	70%	130%	100%	80%	120%	106%	70%	130%
Dissolved Beryllium	3128440		<1	<1	NA	< 1	103%	70%	130%	98%	80%	120%	99%	70%	130%
Dissolved Boron	3128440		1410	1450	2.8%	< 10	106%	70%	130%	100%	80%	120%	NA	70%	130%
Dissolved Cadmium	3128440		<0.08	<0.08	NA	< 0.05	107%	70%	130%	91%	80%	120%	92%	70%	130%
Dissolved Calcium	3235379		73600	72600	1.4%	< 300	98%	70%	130%	91%	80%	120%	NA	70%	130%
Dissolved Chromium	3128440		<1	<1	NA	< 1	101%	70%	130%	100%	80%	120%	104%	70%	130%
Dissolved Cobalt	3128440		3	3	NA	< 1	103%	70%	130%	99%	80%	120%	101%	70%	130%
Dissolved Copper	3128440		2	2	NA	< 1	100%	70%	130%	97%	80%	120%	91%	70%	130%
Dissolved Iron	3235379		<100	<100	NA	< 100	90%	70%	130%	88%	80%	120%	89%	70%	130%
Dissolved Lead	3128440		<0.5	<0.5	NA	< 0.5	103%	70%	130%	102%	80%	120%	93%	70%	130%
Dissolved Lithium	3128440		194	194	0.2%	< 1	104%	70%	130%	104%	80%	120%	NA	70%	130%
Dissolved Magnesium	3235379		31900	31000	2.7%	< 200	92%	70%	130%	84%	80%	120%	NA	70%	130%
Dissolved Manganese	3235379		1	1	NA	< 1	92%	70%	130%	84%	80%	120%	85%	70%	130%
Dissolved Mercury	3233630 323	3630	< 0.025	< 0.025	NA	< 0.025	101%	70%	130%	102%	80%	120%	109%	70%	130%
Dissolved Molybdenum	3128440		8	8	0.9%	< 1	100%	70%	130%	98%	80%	120%	105%	70%	130%
Dissolved Nickel	3128440		10	9	NA	< 3	111%	70%	130%	95%	80%	120%	99%	70%	130%
Dissolved Potassium	3235379		2670	2670	NA	< 600	88%	70%	130%	84%	80%	120%	83%	70%	130%
Dissolved Selenium	3128440		10.4	12.0	NA	< 0.5	100%	70%	130%	97%	80%	120%	104%	70%	130%
Dissolved Silver	3128440		0.2	<0.1	NA	< 0.1	92%	70%	130%	86%	80%	120%	83%	70%	130%
Dissolved Sodium	3235379		78200	76100	2.8%	< 600	92%	70%	130%	86%	80%	120%	NA	70%	130%
Dissolved Strontium	3128440		1390	1260	9.8%	< 1	106%	70%	130%	96%	80%	120%	NA	70%	130%
Dissolved Thallium	3128440		<0.1	<0.1	NA	< 0.1	95%	70%	130%	99%	80%	120%	88%	70%	130%
Dissolved Tin	3128440		1.1	1.1	NA	< 0.5	98%	70%	130%	94%	80%	120%	97%	70%	130%
Dissolved Titanium	3128440		<2	<2	NA	< 1	100%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Uranium	3128440		3	3	NA	< 1	95%	70%	130%	100%	80%	120%	98%	70%	130%
Dissolved Vanadium	3128440		<1	<1	NA	< 1	94%	70%	130%	101%	80%	120%	108%	70%	130%
Dissolved Zinc	3128440		<10	<10	NA	< 10	95%	70%	130%	90%	80%	120%	87%	70%	130%
Dissolved Bismuth	3128440		<0.001	<0.001	NA	< 0.001	98%	70%	130%	98%	80%	120%	88%	70%	130%
Dissolved Silicon	3235379		4.21	4.09	3.1%	< 0.032	93%	70%	130%	91%	80%	120%	NA	70%	130%
Dissolved Sulfur	3235379		28.6	28.6	0.1%	< 0.3	86%	70%	130%	80%	80%	120%	NA	70%	130%
Dissolved Zirconium	3235379		< 0.01	< 0.01	NA	< 0.01	92%	70%	130%	81%	80%	120%	83%	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

SAMPLING SITE:

ATTENTION TO: Robin Chatwin-Davies

SAMPLED BY:

Water Analysis (Continued)

					•	•									
RPT Date: Nov 30, 2021			C	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce	ptable mits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Aluminum	3121837		8	11	NA	< 4	95%	70%	130%	70%	80%	120%	72%	70%	130%
Total Antimony	3121837		<1	<1	NA	< 1	101%	70%	130%	108%	80%	120%	102%	70%	130%
Total Arsenic	3121837		8	7	6.6%	< 1	81%	70%	130%	93%	80%	120%	102%	70%	130%
Total Barium	3121837		<50	<50	NA	< 50	73%	70%	130%	80%	80%	120%	NA	70%	130%
Total Beryllium	3121837		<0.5	<0.5	NA	< 0.5	110%	70%	130%	94%	80%	120%	80%	70%	130%
Total Boron	3121837		<10	<10	NA	< 10	106%	70%	130%	90%	80%	120%	78%	70%	130%
Total Cadmium	3121837		<0.016	<0.016	NA	< 0.016	99%	70%	130%	104%	80%	120%	100%	70%	130%
Total Calcium	3121837		44200	44300	0.2%	< 300	107%	70%	130%	104%	80%	120%	NA	70%	130%
Total Chromium	3121837		<0.5	<0.5	NA	< 0.5	104%	70%	130%	88%	80%	120%	92%	70%	130%
Total Cobalt	3121837		<0.9	<0.9	NA	< 0.9	97%	70%	130%	95%	80%	120%	91%	70%	130%
Total Copper	3121837		<0.8	<0.8	NA	< 0.8	99%	70%	130%	97%	80%	120%	88%	70%	130%
Total Iron	3121837		<100	<100	NA	< 100	111%	70%	130%	104%	80%	120%	98%	70%	130%
Total Lead	3121837		0.2	0.2	NA	< 0.1	80%	70%	130%	82%	80%	120%	77%	70%	130%
Total Lithium	3121837		12	12	4.5%	< 1	104%	70%	130%	102%	80%	120%	88%	70%	130%
Total Magnesium	3121837		17000	17500	2.9%	< 200	100%	70%	130%	104%	80%	120%	NA	70%	130%
Total Manganese	3121837		17	19	NA	< 5	110%	70%	130%	102%	80%	120%	112%	70%	130%
Total Molybdenum	3121837		1	2	NA	< 1	104%	70%	130%	103%	80%	120%	102%	70%	130%
Total Nickel	3121837		<3	<3	NA	< 3	95%	70%	130%	95%	80%	120%	90%	70%	130%
Total Potassium	3121837		82800	85600	3.3%	< 600	94%	70%	130%	99%	80%	120%	NA	70%	130%
Total Selenium	3121837		1.0	1.6	NA	< 0.5	101%	70%	130%	104%	80%	120%	102%	70%	130%
Total Silver	3121837		<0.1	<0.1	NA	< 0.1	95%	70%	130%	86%	80%	120%	79%	70%	130%
Total Sodium	3121837		34500	34500	0.0%	< 600	103%	70%	130%	99%	80%	120%	NA	70%	130%
Total Strontium	3121837		339	302	11.5%	< 1	117%	70%	130%	97%	80%	120%	NA	70%	130%
Total Thallium	3121837		<0.1	<0.1	NA	< 0.1	95%	70%	130%	100%	80%	120%	95%	70%	130%
Total Tin	3121837		<0.2	<0.2	NA	< 0.2	102%	70%	130%	104%	80%	120%	101%	70%	130%
Total Titanium	3121837		3	4	NA	< 1	103%	70%	130%	90%	80%	120%	88%	70%	130%
Total Uranium	3121837		<1	1	NA	< 1	105%	70%	130%	97%	80%	120%	96%	70%	130%
Total Vanadium	3121837		<1	<1	NA	< 1	99%	70%	130%	96%	80%	120%	93%	70%	130%
Total Zinc	3121837		<10	<10	NA	< 10	101%	70%	130%	89%	80%	120%	92%	70%	130%
Total Bismuth	3121837		<0.001	<0.001	NA	< 0.001	100%	70%	130%	104%	80%	120%	97%	70%	130%
Total Silicon	3121837		2.3	2.4	2.3%	< 0.1	111%	70%	130%	104%	80%	120%	NA	70%	130%
Total Sulfur	3121837		44.1	45.5	3.1%	< 0.3	102%	70%	130%	99%	80%	120%	NA	70%	130%
Total Zirconium	3121837		<0.01	<0.01	NA	< 0.01	108%	70%	130%	80%	80%	120%	101%	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

With multi element scans it is acceptable for a maximum of 10% (including non-reported elements) of each QC criteria to fail to an absolute maximum of 10%.

Water Analysis - pH									
рН	3233671	8.78	8.79	0.1%	N/A	101%	90%	110%	
	SURANCE REPORT (V1	1)							Page 13 of 19

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

ATTENTION TO: Robin Chatwin-Davies

SAMPLING SITE:

SAMPLED BY:

Water Analysis (Continued)

PT Date: Nov 30, 2021			C	UPLICAT	E		NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acce Lin	ptable nits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Water Analysis - Total & Diss. Cr6+

Hexavalent Chromium	3234004 3234004	< 0.01	< 0.01	NA	< 0.01	84%	70%	130%	82%	80%	120%	83%	70%	130%
Dissolved Chromium (VI)	3234004 3234004	< 0.01	< 0.01	NA	< 0.01	84%	70%	130%	82%	80%	120%	83%	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

QC Exceedance

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

ATTENTION TO: Robin Chatwin-Davies

RPT Date: Nov 30, 2021		REFERENC	E MATE	RIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Sample Id	Measured	Acce Lin	ptable nits	Recovery	Acceptable Limits		Recovery	Acce Lir	ptable nits
		value	Lower	Upper		Lower	Upper	,	Lower	Upper
British Columbia CSR - Omnibus Total Metals plus Mercury (ug/L)										
Total Aluminum		95%	70%	130%	70%	80%	120%	72%	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

With multi element scans it is acceptable for a maximum of 10% (including non-reported elements) of each QC criteria to fail to an absolute maximum of 10%.

Page 15 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

ATTENTION TO: Robin Chatwin-Davies

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Aluminum	INST 0141	SM 3125 B	ICP-MS
Dissolved Antimony	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Arsenic	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Barium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Beryllium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Boron	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Cadmium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Calcium	INST 0140	SM 3120 B-D	ICP/OES
Dissolved Chromium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Cobalt	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Copper	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Iron	INST 0140	SM 3120 B-D	ICP/OES
Dissolved Lead	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Lithium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Magnesium	INST 0140	SM 3120 B-D	ICP/OES
Dissolved Manganese	INST 0140	SM 3120 B-D	ICP/OES
Dissolved Mercury	INST 0160	SM 3112 B DW	CV/AA
Dissolved Molybdenum	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Nickel	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES
Dissolved Selenium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Silver	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Sodium	INST 0140	SM 3120 B-D	ICP/OES
Dissolved Strontium	INST 0141	SM 3125 B	ICP-MS
Dissolved Thallium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Tin	INST 0141	SM 3125 B	ICP-MS
Dissolved Titanium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Uranium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Vanadium	INST 0141	SM 3125 B-D	ICP/MS
Dissolved Zinc	INST 0141	SM 3125 B-D	ICP/MS
Lab Filtration Performed			N/A
Dissolved Bismuth	INST 0141	SM 3125 B	ICP-MS
Dissolved Silicon	INST 0140	SM 3120 B	ICP/OES
Dissolved Sulfur	INST 0140	SM 3120 B	ICP/OES
Dissolved Zirconium	INST 0140	SM 3120 B	ICP/OES
Total Aluminum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Antimony	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Beryllium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Boron	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Cadmium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Calcium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Chromium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Cobalt	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Copper	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Iron	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Lead	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Lithium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS

Method Summary

CLIENT NAME: PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) AGAT WORK ORDER: 21C832945

PROJECT: 21455123

ATTENTION TO: Robin Chatwin-Davies

SAMPLING SITE:	SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Total Magnesium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Manganese	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Mercury	INST-0160	BC Lab Manual	CV/AA				
Total Molybdenum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS				
Total Nickel	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Potassium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Selenium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Silver	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Sodium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Strontium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Thallium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Tin	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Titanium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Uranium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Vanadium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Zinc	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Bismuth	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS				
Total Silicon	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Sulfur	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Total Zirconium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES				
Dissolved Organic Carbon (DOC)	INST 0170	SM 5310 B	COMBUSTION				
Hexavalent Chromium	WATR-0300	SM 3500-Cr. B	SPECTROPHOTOMETER				
Dissolved Chromium (VI)	WATR-0300	EPA SW 846-6010B, SM 3030B	SPECTROPHOTOMETER				
pH	INST 0101, INST 0104	SM 4500 H+	PH METER				

Laboratory Use Only 120 - 8600 Glenlyon Parkway Burnaby, BC Arrival Temperature: V5J 0B6 P: 778.452.4000 • F: 778.452.4074

Notes:

AGAT Job Number: 19-NOV 721 PM 5 103

14°C

Chain of Custody Record

Report Information	Report Information	Report Format	
Company: Galder Associates	1. Name: Robin Chatuin Davies	Single	Turnaround Time Required (TAT)
Contact: Poblo Chotwin- Davis Alexist	Email: <u>echatwin Davies @ gader.com</u>	□ Sample per Page	Rush TAT Same Business Day - 200%
Address:	Email: A Fort A polder Com	Multiple	□ 1 Business Day - 100% □ 2 Business Days - 50%
	Trane guaries i	Page	□ 3 Business Days - 25%
Phone: Fax:	Requirements (Please Check)	Excel Format	Date Required:
AGAT Quote #: <u>PSPC Lup TA # 700-89422</u>	BC CSR Soil BC CSR - Water	Included	PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE
Client Project #: _21465123			
Invoice To Same as above Yes / No		Et ste	
Company Riplic Services and Dominist		AN B	
Contact: Chile Milling			ŧ
Address: BOD Bright Stippt		5230	
Vancaver BC Visora	Schedule 3.3 (Please Specify)	1775 +	
Phone: Fax:	CCME (Please Specify)	\$ 3 S	Days
PO/AFE#:	Other (Please Specify)	TAN A	
		1-3 73	
LABORATORY USE (LAB ID #) 252-34 074	DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	विवस्त,	Som Som Hara
Stuttriate Elutriate CTL LAB water	1530 19 11 21	~ ~ ~ ~ ~	× 8
DE 2021/11 Elutrate Site CTL		V V V V V	
06 Elutriate 1-6%		VVVVV	
Of Electrotte 3.27.			
US ELETICATE 0.51.			
Elistricto 25/			
12 Elutrivity SD-1			× 5
13 Elutriate 100/		V V V	×
		VVVV	30
	1000		
Samples Relinquished By (Print Name and Sign):	OI 19/11/21 An INOT	Date/Time	Page of
Samples Relinquished By (Print Name and Sign): Date/Tim Samples Relinquished By (Print Name and Sign): Date/Tim	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	Date/Time	Nº: 048333
			Du Duis 4 Mar 14 /

agat La	SAMPLE INTEGRITY RECEIPT FORM
RECEIVING BASICS - Shipping Company/Consultant: Golder Associates	Temperature (Bottles/Jars only) N/A if only Soil Bags Received FROZEN (Please Circle if samples received Frozen)
Courier: Ja20D Prepaid Collect Waybill# Branch: EDM GP FN FM RD VAN LYD FSJ EST SASK Other:	$1 (Bottle/Jar) 4 + 7 + 3 = 4 \circ C 2 (Bottle/Jar) + + = - \circ C 3 (Bottle/Jar) + + = - \circ C 4 (Bottle/Jar) + + = - \circ C 5 (Bottle/Jar) + + = - \circ C 6 (Bottle/Jar) + + = - \circ C 7 (Bottle/Jar) + + = - \circ C 8 (Bottle/Jar) + + = - \circ C 7 (Bottle/Jar) + - + = - \circ C 8 (Bottle/Jar) + - + = - \circ C 7 (Bottle/Jar) + - + - = - \circ C 8 (Bottle/Jar) + - + - = - \circ C 7 (Bottle/Jar) + - + - = - \circ C 8 (Bottle/Jar) + - + - = \circ C 7 (Bottle/Jar) + - + - = \circ C 8 (Bottle/Jar) + - + - = \circ C 7 (Bottle/Jar) + - + - = \circ C 8 (Bottle/Jar) + - + - = \circ C 7 (Bottle/Jar) + - + - = \circ C 8 (Bottle/Jar) + - + - = \circ C 7 (Bottle/Jar) + - + - = \circ C 8 (Bottle/Jar) + - + - = \circ C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C 7 (Bottle/Jar) + - + - = 0 C 8 (Bottle/Jar) + - + - = 0 C B (Bottle/Jar) + - + = 0 C B (B ($
If multiple sites were submitted at once: Yes No Custody Seal Intact: Yes No NA	9 (Bottle/Jar)++ =°C 10 (Bottle/Jar)++=°C (If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Reg Other Cooler Quantity:	LOGISTICS USE ONLY Workorder No: 210832945
TIME SENSITIVE ISSUES - Shipping ALREADY EXCEEDED HOLD TIME? Yes	No Bubble Wrap Frozen Courier Other:
Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Color , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* , Chloroamines*	Account Project Manager:have they been notified of the above issues: Yes NoDate/Time:
Earliest Expiry:	CPM Initial General Comments:
SAMPLE INTEGRITY - Shipping Hazardous Samples: YES NO Legal Samples: Yes No International Samples: Yes No Tape Sealed: Yes No Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

e filtar

Date issued: March 11, 2020 Document ID: SR-9505.004

Page 1 of 1

ATTACHMENT 3

Toxicity Testing Results

Toxicity Test Results

Elutriate

Final Report

January 10, 2022

Submitted to: **Golder Associates Ltd.** Victoria, BC

10823 27 Street SE, Calgary, AB T2Z 3V9

TABLE OF CONTENTS

Signa	ature Page	ii
Sumr	mary	V
1.0	Introduction	1
2.0	Methods 2.1 Elutriate Preparation	2 2
	2.2 Toxicity Tests	2
3.0	Results	4
4.0	QA/QC	5
5.0	References	6

List of Tables

Table 1.	Summary of test conditions: fathead minnow (Pimephales promelas) survival an	۱d
	growth test	.3
Table 2.	Results: fathead minnow (Pimephales promelas) survival and biomass test	.4
Table 3.	Reference toxicant test results.	.5

List of Appendices

APPENDIX A – *Pimephales promelas* Toxicity Test Data APPENDIX B – Chain-of-Custody Forms

SIGNATURE PAGE

Report By: Émilie Viczko, MSc Project Biologist

Destalant

Reviewed By: Leila Oosterbroek, P Biol Environmental Scientist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

SUMMARY

Sample and Test Type Information

S	Sample ID (Internal ID)	5400-01 (2122-0611)
	Sample ID (Internal ID)	Elutriate (2122-0677) ¹
	Sample collection date	November 8, 2021
	Elutriate preparation date	November 17, 2021
	Sample receipt date	November 11, 2021
	Sample receipt date	November 19, 2021
	Sample receipt temperature	12.6°C
Sar	Sample receipt temperature	10.7°C
	Test types	7-d Pimephales promelas survival and biomass

¹The elutriate was prepared at the Nautilus Environmental laboratory in Burnaby, BC by combining samples identified as 06188-01 (sediment) and 5399-01 (water), as submitted by Golder Associates Ltd.

Summary of Results

Fradrasint	% v/v			
Endpoint	Elutriate			
P. promelas				
Survival LC50	>100			
Biomass IC25	>100			

LC = Lethal Concentration, IC = Inhibition Concentration

1.0 INTRODUCTION

Nautilus Environmental Company Inc. conducted a toxicity test for Golder Associates Ltd. (Golder). Sample 5400-01 (site water) was collected on November 8, 2021 and delivered to the Nautilus Environmental laboratory in Calgary, AB on November 11, 2021. The sample was transported in four 20-L plastic containers and was received at a temperature of 12.6°C. Elutriate was prepared on November 17, 2021 at the Nautilus Environmental laboratory in Burnaby, BC using samples identified by Golder as 06188-01 (sediment) and 5399-01 (water). The prepared elutriate sample was delivered to the Nautilus Environmental laboratory in Calgary, AB on November 19, 2021. The elutriate sample was transported in six 2-L plastic containers and was received at a temperature of 10.7°C. Testing was initiated on November 19, 2021. Both samples were stored in the dark at 4 \pm 2°C prior to testing. The following toxicity test was performed on the sample:

• 7-d *Pimephales promelas* survival and biomass

This report describes the results of this toxicity test. Copies of raw laboratory data sheets and statistical analyses are provided in Appendix A. The chain-of-custody form is provided in Appendix B.

2.0 METHODS

2.1 Elutriate Preparation

The elutriate sample was prepared at the Nautilus Environmental laboratory in Burnaby, BC using the procedure described by the United States Environmental Protection Agency (1998). To begin, a sediment sample (06188-01) and a water sample (5399-01), as submitted by Golder, were acclimated to room temperature overnight. Both samples were homogenized before use. The sediment sample was hand-stirred for 5 minutes and large, woody debris were removed and the water sample was shaken. The sediment and water were then combined in a sediment-to-water ratio of 1:4 on a volume basis. This mixture was stirred vigorously for 30 minutes via magnetic stirrer. Every 10 minutes the mixture was also stirred manually to ensure complete mixing. After the 30-minute mixing period, the mixture was left to settle for 1 hour. The supernatant was then removed using a siphon, yielding the elutriate sample. The elutriate was centrifuged at approximately 2,000 rpm for 30 minutes to remove any remaining particulates. The centrifugation was repeated once more to further clarify the elutriate. Prepared elutriate was stored in dark at 4 $\pm 2^{\circ}$ C until required for testing.

2.2 Toxicity Tests

The method for the toxicity test is summarized in Table 1. Testing was conducted according to the procedure described by the Environment Canada protocol (2011). Both a negative laboratory and site control were included in the test design. The site control was used for endpoint calculation. Statistical analyses for this test were performed using CETIS (Tidepool Scientific Software, version 1.9.4.11).

Test species	Pimephales promelas
Organism source	Aquatox Inc., Hot Springs, Arkansas
Organism age	<24 hours post hatch
Test type	Static-renewal
Test duration	7 days
Test vessel	385 mL plastic containers
Test volume	250 mL
Test solution depth	6.5 cm
Test concentrations	Seven concentrations, plus laboratory and site control
Test replicates	3 per treatment
Number of organisms	10 per replicate
Laboratory control water	De-chlorinated City of Calgary tap water amended with 4 mg/L KCl
Site control/dilution water	Site water
Test solution renewal	Daily (80% renewal)
Test temperature	25 ± 1°C
Feeding	Twice each day with approximately 1500-2250 newly hatched brine shrimp (<i>Artemia nauplii</i>) per 10 fish.
Light intensity	100 to 500 lux
Photoperiod	16 hours light / 8 hours dark
Aeration	None
Test measurements	pH, conductivity, dissolved oxygen and temperature were measured daily; evaluated for survival daily
Test protocol	Environment Canada (2011), EPS 1/RM/22
Statistical software	CETIS version 1.9.4.11
Test endpoints	Survival and biomass
Test acceptability criteria for controls	≥80% survival, ≥0.25 mg mean dry weight
Reference toxicant	Sodium chloride (NaCl)

Table 1.Summary of test conditions: fathead minnow (Pimephales promelas)survival and growth test.

3.0 **RESULTS**

Results of the toxicity test are summarized in Table 2 for the elutriate sample. There were no adverse effects observed on survival or biomass of *P. promelas*, resulting in an LC50 and IC25 of >100%, respectively.

Concentration (% v/v)	Survival (%)	Biomass (mg)
	(Mean ± SD)	(Mean ± SD)
Laboratory Control	100.0 ± 0.0	0.22 ± 0.01
Site Control	100.0 ± 0.0	0.54 ± 0.03
1.56	100.0 ± 0.0	0.50 ± 0.02
3.12	100.0 ± 0.0	0.50 ± 0.05
6.25	90.0 ± 10.0	0.45 ± 0.05
12.5	100.0 ± 0.0	0.50 ± 0.08
25	100.0 ± 0.0	0.56 ± 0.11
50	96.7 ± 5.8	0.47 ± 0.04
100	96.7 ± 5.8	0.48 ± 0.02
Test endpoint (% v/v)		
LC50	>100	
IC25		>100

Table 2. Results: fathead minnow (*Pimephales promelas*) survival and biomass test.

SD = Standard Deviation, LC = Lethal Concentration, IC = Inhibition Concentration

4.0 QA/QC

The health history of the test organisms used in the exposures were acceptable and met the requirements of the Environment Canada protocols. The laboratory control met the control acceptability for survival, but did not meet the control acceptability criteria for biomass. The site control, which met both control acceptability criteria, was used as the negative control for the test. Water quality parameters remained within ranges specified in the protocol throughout the tests. There were no deviations from the test methodology with the exception of feeding the test organisms on day zero of testing. On day zero, the test organisms were not fed due to a technical error, resulting in a protocol deviation. Uncertainty associated with this test is best described by the standard deviations around the means.

Results of the reference toxicant test conducted during the testing program are summarized in Table 3. The reference toxicant test was performed under the same conditions as those used during testing. Results for this test fell within the acceptable range for organism performance of two standard deviations of the mean, based on historical results obtained by the laboratory with these tests. Thus, the sensitivity of the organisms used in this test was appropriate.

Test Species	Endpoint (95% CL)	Historical Mean (2 SD Range)	CV (%)	Test Date
D promotos	Survival (LC50): 8.5 (7.7-9.3) g/L NaCl	5.8 (3.8-8.9)	14.3	November 19,
r. prometas	Biomass (IC25): 3.0 (2.7-3.9) g/L NaCl	3.4 (2.2-5.3)	14.3	2021

Table 3.Reference toxicant test results.

SD = Standard Deviation, CV = Coefficient of Variation, LC = Lethal Concentration, IC = Inhibition Concentration, CL=Confidence Limit

5.0 **REFERENCES**

- Environment Canada. 2011. Biological test method: test of larval growth and survival using fathead minnows. EPS 1/RM/22, Second Edition, March 2011.
- Tidepool Scientific Software. 2018. CETIS comprehensive environmental toxicity information system, version 1.9.4.11 Tidepool Scientific Software, McKinleyville, CA. 275 pp.
- US EPA/US ACE. 1998. Evaluation of dredged material proposed for discharge in waters of the U.S. – testing manual. Standard elutriate preparation. EPA-823-B-98-004, February 1998.

APPENDIX A – Pimephales promelas Toxicity Test Data

1

Fathead Minnow Extra Concentrations Bench Sheet

Reviewed By:

Date Reviewed: 2021/12/02

Fathead Minnow Extra Concentrations Bench Sheet

* Duy 2 pt : 7.7, 52, 8.1, 50, 7.9, 8 w EC: 236, 247, 244, 242, 243

Organism Weights

Fathead Minn	iow 7-d Larval Surviva	I and Growt	h Test		N	lautilus Environmenta	al Calgary	
Analysis ID: Analyzed:	15-0130-6526 Endpoint: 21 Dec-21 7:53 Analysis:		7d Survival Rate Linear Interpolation (ICPIN)	CETIS Version:CETISv1.9.4Status Level:1				
Batch ID: Start Date: Ending Date: Test Length:	09-2262-4419Test Type:Growth-Survival (7d)19 Nov-21Protocol:EC/EPS 1/RM/2226 Nov-21Species:Pimephales promelas7d 0hTaxon:Actinopterygii		Growth-Survival (7d) EC/EPS 1/RM/22 Pimephales promelas Actinopterygii	Analyst: Diluent: Brine: Source:	Miche Dech Aqua	elle Provincial lorinated Tap Water tox, AR	Age: <24	
Sample ID: Sample Date: Receipt Date: Sample Age:	07-8319-2887 17 Nov-21 19 Nov-21 2d 0h (10.7 °C)	Code: Material: CAS (PC): Client:	2122-0677 Water Sample Golder Associates Ltd.	Project: Source: Station:	Golde Elutri	er Associates Ltd ate		

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method			
Log(X+1)	Linear	1142329	200	Yes	Two-Point Interpolation			
Residual Analysis								

Attribute	Method	Test Stat	Critical	P-Value	Decision(α:5%)
Extreme Value	Grubbs Extreme Value Test	2.612	2.802	0.1139	No Outliers Detected

Point Estimates

Level	%	95% LCL	95% UCL	τu	95% LCL	95% UCL
LC5	>100	n/a	n/a	<1	n/a	n/a
LC10	>100	n/a	n/a	<1	n/a	n/a
LC15	>100	n/a	n/a	<1	n/a	n/a
LC20	>100	n/a	n/a	<1	n/a	n/a
LC25	>100	n/a	n/a	<1	n/a	n/a
LC40	>100	n/a	n/a	<1	n/a	n/a
LC50	>100	n/a	n/a	<1	n/a	n/a

7d Survival Rate Summary			Calculated Variate(A/B)							Isotonic Variate	
Conc-%	Code	Count	Mean	Min	Мах	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	XC	3	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	30/30	1	0.0%
1.6		3	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	30/30	1	0.0%
3.2		3	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	30/30	1	0.0%
6.3		3	0.9000	0.8000	1.0000	0.1000	11.11%	10.0%	27/30	0.9667	3.33%
12		3	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	30/30	0.9667	3.33%
25		3	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	30/30	0.9667	3.33%
50		3	0.9667	0.9000	1.0000	0.0577	5.97%	3.33%	29/30	0.9667	3.33%
100		3	0.9667	0.9000	1.0000	0.0577	5.97%	3.33%	29/30	0.9667	3.33%

7d Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3
0	XC	1.0000	1.0000	1.0000
1.6		1.0000	1.0000	1.0000
3.2		1.0000	1.0000	1.0000
6.3		0.8000	1.0000	0.9000
12		1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000
50		1.0000	1.0000	0.9000
100		0.9000	1.0000	1.0000

21 Dec-21 07:54 (p 2 of 2) Report Date: Test Code/ID: 2122-0677 FMD / 14-3746-8772

Fathead Min	now 7-d Larval S	Nautilus Environmental Calgary				
Analysis ID: Analyzed:	15-0130-6526 21 Dec-21 7:53	Er Ar	ndpoint: 7a nalysis: Li	l Survival Rate near Interpolation (ICPIN)	CETIS Version: Status Level:	CETISv1.9.4 1
7d Survival F	Rate Binomials					
Conc-%	Code	Rep 1	Rep 2	Rep 3		
0	XC	10/10	10/10	10/10		
1.6		10/10	10/10	10/10		
2.0		10/10	10/10	10/10		

3.2	10/10	10/10	10/10
6.3	8/10	10/10	9/10
12	10/10	10/10	10/10
25	10/10	10/10	10/10
50	10/10	10/10	9/10
100	9/10	10/10	10/10

Graphics

Fathead Minr	ow 7-d Larval Surviv	al and Growt	h Test			١	Nautilus Environment	tal Calgary
Analysis ID: Analyzed:	07-5334-8903 21 Dec-21 7:54	Endpoint: Analysis:	Mean Dry Bioma Linear Interpolat	ass-mg ion (ICPIN)	CETIS Vers Status Leve	ion: el:	CETISv1.9.4 1	
Batch ID: Start Date: Ending Date: Test Length:	09-2262-4419 19 Nov-21 26 Nov-21 7d 0h	Test Type: Protocol: Species: Taxon:	Growth-Survival EC/EPS 1/RM/2 Pimephales pror Actinopterygii	(7d) 2 melas	Analyst: Diluent: Brine: Source:	Mich Dech Aqua	elle Provincial Ilorinated Tap Water Itox, AR	Age: <24
Sample ID: Sample Date: Receipt Date: Sample Age:	07-8319-2887 17 Nov-21 19 Nov-21 2d 0h (10.7 °C)	Code: Material: CAS (PC): Client:	2122-0677 Water Sample Golder Associate	es Ltd.	Project: Source: Station:	Gold Elutri	er Associates Ltd iate	
Linear Interpo X Transform	olation Options Y Transform	Seed	Resamples	Exp 95% CL	Method			
Log(X+1)	Linear	744595	200	Yes	Two-Point Interpolation			

Residual Analysis

Attribute	Method	Test Stat	Critical	P-Value	Decision(α:5%)
Extreme Value	Grubbs Extreme Value Test	2.597	2.802	0.1213	No Outliers Detected

Point Estimates

Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL
IC5	0.96	n/a	80.8	104.2	1.238	n/a
IC10	39.52	n/a	n/a	2.53	n/a	n/a
IC15	>100	n/a	n/a	<1	n/a	n/a
IC20	>100	n/a	n/a	<1	n/a	n/a
IC25	>100	n/a	n/a	<1	n/a	n/a
IC40	>100	n/a	n/a	<1	n/a	n/a
IC50	>100	n/a	n/a	<1	n/a	n/a

Mean Dry Bio	mass-mg Sum				Isotonic Variate					
Conc-%	Code	Count	Mean	Min	Мах	Std Dev	CV%	%Effect	Mean	%Effect
0	XC	3	0.539	0.516	0.574	0.03081	5.72%	0.0%	0.539	0.0%
1.6		3	0.4957	0.479	0.516	0.01877	3.79%	8.04%	0.5007	7.1%
3.2		3	0.497	0.445	0.526	0.04513	9.08%	7.79%	0.5007	7.1%
6.3		3	0.4543	0.404	0.502	0.04905	10.80%	15.71%	0.5007	7.1%
12		3	0.4987	0.434	0.587	0.0792	15.88%	7.48%	0.5007	7.1%
25		3	0.558	0.436	0.64	0.1077	19.30%	-3.53%	0.5007	7.1%
50		3	0.4717	0.438	0.51	0.03623	7.68%	12.49%	0.477	11.5%
100		3	0.4823	0.458	0.496	0.02113	4.38%	10.51%	0.477	11.5%

Mean Dry Biomass-mg Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3
0	XC	0.527	0.574	0.516
1.6		0.479	0.516	0.492
3.2		0.526	0.52	0.445
6.3		0.404	0.457	0.502
12		0.434	0.475	0.587
25		0.598	0.64	0.436
50		0.51	0.438	0.467
100		0.496	0.493	0.458

Report Date:	21 Dec-21 07:55 (p 2 of 2)
Test Code/ID:	2122-0677 FMD / 14-3746-8772

Fathead Mini	lautilus Environmental Calgary				
Analysis ID:	07-5334-8903	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.9.4
Analyzed:	21 Dec-21 7:54	Analysis:	Linear Interpolation (ICPIN)	Status Level:	1

APPENDIX B – Chain-of-Custody Forms

	CHAIN OF CUSTOR	DY RECORD/ANALY	SIS REQUES	r Ng E	5400 pageof
Golder	Project Number:	455123	Laboratory Na	me: Nautilus En	nvironmental
Associates			Address:	27 Streets	E Calgary AB
500-4260 Still Creek Drive Burnaby, British Columbia, Canada V5C 6C6 Telephone 604-298-6623 Fax 604-298-5253	Golder Contact: R. Chadwin-Duu	Golder E-mail Address:	golder.com	20-8773 Air	ot: Mando Tang
Office the final reports should be sent to:	. 18	s Langford St.	An	alyses Required	
500 - 4260 Still Creek Dr. Burnaby, B.C. V5C 6C6 Tel: 604-298-6623 Fax: 604-298-5253	300 – 2190 West Railway St. -3795 Abbotsford, B.C. Victor V2S 2E2 V82 6 Tel: 604-850-8786 Tel: 2: Fax: 604-850-8756 Fax: 2	Garey Rd., 2nd floor ria, B.C. 578- 50-881-7372 250-881-7470	ler Later		
Sample Control Number (SCN)	Sample Date Matrix Sampled (over) (D/M/Y)	mber of Co	other		T Remarks
2122-0611		Z	337		R (0.0.)
5400 -01	SW 1/1/201	4	\times		for dutriate
2021/11/11 -02					minrow
Purclator -03					
9x20L -04					
Nochies -05					
Condition -00					
-08					
-09					
-10					
-11					
-12					
Sampler's Signature: Route	Relinquished by: Signature	Company Date	Time	Received by: Signature	Company
Sample Storage (°C)	Relinquished by: Signature	Company Date	Time	Received by: Signature	Company
Comments: tos focalistricto	Method of Shipment:	Waybill No.:	Received for Lab by:	Date	Time
(BDD) For lothead	Shipped by: Rucolator	Shipment Condition: Seal Intact:	Temp (°C) Cooler	opened by: Date	Time
Willing	,	Providence of All All and the second s			

WHITE: Golder Copy YELLOW: Lab Copy PINK: Lab returns with Final Report

TESTING LOCATION (Please Circle)

Burnaby (8664 Commerce Court

V5A 4N7

Phone 604.420.8773

Chain of Custody

Burnaby, British Columbia, Canada T2Z 3V9

Calgary, Alberta, Canada Phone 403.253.7121

Point Edward, Ontario, Canada N7V 1X4 Phone 519.339.8787

Date_ __Page__of__

Report to:	Report to:			Invoice To:					2	,	ANALYS	ES REQU	JIRED			
Company Address	Golder Associates	3		Company Address				st								(0)
City/Prov/PC				City/Prov/PC				He								ture
Contact	Robin Chatwin-Da	avies; Alexis	s Fast	Contact				NO								erat
Phone				Phone				inn								emp
Email				PO No.				Σp								ipt T
Sample Collection By: A	0			Sample Type: Grab	O OR	Composite (0	thea								Rece
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AN VOLUME (e.g. 1 x 20	ID L)	COMMEN	ITS	7-D Fa								
Elutriate	17/11/21			6 x 2 L												
20240677																
20211119																
11:40					-									_		
Fedex																
JC																
6x2L bottles																
NoS/Nob																
N.7°C																
SPECIAL INSTRU	JCTIONS/COMME	NTS (CLIEN	NT)	SAMPLE R	ECEIPT DET	AILS (LABORATO	DRY)	S	AMPLE	DESCR	PTION	AND	омм	ENTS (L	BORA	TORY)
				1. Total No. of Containers		4. Ice Present in Cooler?	Y/N									
				2. Courier		5. Seal Present?	Y/N									
				3. Good Condition?	Y/N	6. Initials Present on Seal?	Y/N									
RELIN	QUISHED BY (CLI	ENT)		REC	EIVED BY (L	ABORATORY)										
(Printed Name)			(Signaturi	Ur liability is limited to the cost of the test requested. T (Signature) (Printed Name) (Signature) relate to the sample as received. No liability in whole or the collection, handling, or transport of the sample, app				ested. The hole or in ile, applica	e test res part is a ation or	ults only ssumed for						
(Company)		(Date DI	D/MM/YY and Time	e) (Company)		(Da	te DD/MM/YY and Tim	e)	station of	the test		results II	i par o	, in whole	•	
Additional costs may be r	equired for sampl	e disposal (or storage. F	Payment net 30 unless ot	herwise cor	tracted.							F	orm 020; R	evised by	TP 2021/11/

END OF REPORT

APPENDIX B

Screened Data Tables

Table B-1a: Screening of Freshwater Sediment Analytical Results Table B-1b: Screening of Marine Sediment Analytical Results Table B-2: Screening of Surface Water Analytical Results Table B-3: Screening of Pore Water Analytical Results Table B-4: Screening of Elutriate Analytical Results Table B-5: Screening of Soil Analytical Results Table B-5: Screening of Soil Analytical Results Table B-6: Sediment QA/QC Results Table B-7: Soil QA/QC Results Table B-8: Surface Water QA/QC Results

.ocation Sample Name Sample Date Sample Depth	BC CSR Sediment Standard for Freshwater Sensitive Use ¹	BC CSR Soil Standard for Human Health ²	CCME Freshwater Sediment Guideline ISQG ³	CCME Freshwater Sediment Guideline PEL ³	CCME Soil Guideline for Human Health ⁴	RC17-01 RC17-01SED1 2017-12-06 0.14 m	RC17-01 RC17-01SED2 2017-12-06 0.1 - 0.15 m	RC17-01 RC17-DUP1SED 2017-12-06 0.1 - 0.15 m	RC17-01 RC17-01SED3 2017-12-06 0.2 m	RC17-02 RC17-02SED1 2017-12-06 0-0.2 m	RC17-02 RC17-02SED2 2017-12-06 0-0.2 m	RC17-02 RC17-02SED3 2017-12-06 0-0.2 m	RC17-03 RC17-03SED1 2017-12-06 0-0.2 m	RC17-03 RC17-03SED2 2017-12-06 0-0.22 m	RC17-03 RC17-03SED3 2017-12-06 0-0.13 m	RC17-04 RC17-04SED 2017-12-06 0-0.17 m	RC17-05 RC17-05SED 2017-12-06 0-0.19 m	RC17-06 RC17-06SED 2017-12-06 0-0.16 m	RC17-07 RC17-07SED 2017-12-07 0-0.13 m
DA/QC							FDA	FD											
ield and Physical																			
H Sieve (>19mm) (%)	-	-	-	-	-	6.17	6.5	6.74	6.48	6.66	6.29	6.34	5.53	5.81	6.17	6.42	6.08	6.8	6.83
Sieve - #4 (>4.75mm) (%)	-	-	-	-	-	1	-		-	-	-	-							
Sieve - #200 (>0.075mm) (%)	-	-	-	-	-	3.38	28.6	29.5	55	9.03	10	5.11	26.2	34.3	16.4	68.4	50.1	61.2	68.2
exture	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sravel (%)		-	-	-	-		-		-		-	-		-			-		
Sand (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silt (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Texture	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-
otal Organic Carbon (%)	-	-		-	-	6.4	5.9	5.3	2.1	7	6.6	6.4	8.1	4.4	3.8	2.2	2.3	2.1	2.1
otal Inorganic Carbon (%)	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		
letals						-			-										
Numinum	-	40,000	-	-		22800	22700	20800	15600	23900	25800	27700	20500	21500	25600	12900	14200	13800	14000
Antimony	- 11	500	59	- 17	20	0.48	0.41	0.27	0.22	0.6	0.66	9.84	0.91	0.39	0.25	0.43	0.35	0.42	0.29
Barium	-	15,000	-	-	6,800	79.9	86.4	74.1	59.6	129	152	124	132	114	129	68.3	64.9	65.7	60.7
Beryllium	-	150	-	-	75	0.43	0.41	0.32	0.31	0.47	0.51	0.56	0.39	0.46	0.52	0.26	0.25	0.31	0.26
Bismuth	-	-	-	-	-	0.15	0.11	0.1	< 0.10	0.13	0.16	0.17	0.14	0.11 p	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Cadmium	2.2	40	- 0.6	3.5	14	3.59	7.23	5.08	4.55	25.4	16.4	9.0 13.7	14.4	9.1	0.509	7.87	4.22	+./ 5.77	3.76
Calcium	-	-	-	-	-	4950	6740	5640	4190	6890	8480	6990	9670	5310	5620	6610	6310	6100	5920
Chromium	56	250	37.3	90	220	48.1	64.2	53.8	39.8	105	121	104	75	73.6	41.6	40.4	33.1	40.1	32.2
Chromium Trivalent (Cr(III))		-	-	-	-														
Cobalt	-	25	-	-	50	13	14.4	11.7	8.99	15.3	16.4	15.9	15.3	16.9	19.6	11.3	10.2	12.1	11
Copper	120	7,500	35.7	197	1,100	42.3	38	31.5	24.4	51.6	55.7	50.9	61.8	36.9	29.4	32.5	29	29.8	24
ron	-	35,000	-	-	-	29,700	27,900	24,400	20,200	31,400	33,800	35,600	29,900	33,500	34,200	19,200	20,900	21,800	21,800
ithium	57	65	-	91.5	-	20.8	20.5	17.8	13.5	21.3	19.6	27.8	12.5	18.6	22.1	11.3	8.7	11.4	11.2
Agnesium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
langanese	-	10,000	-	-	-	401	516	428	317	1060	875	965	1070	992	1100	541	418	345	307
Advbdenum	0.3	400	0.17	0.460	0.0	0.082	1.26	1 18	< 0.050	0.097	1 16	0.095	1.37	0.069	< 0.050	< 0.050	0.53	< 0.050	< 0.050
lickel	-	900	-	-	200	30.7	31.1	26.7	21.4	33.4	36.1	36.9	30	29.4	31.2	19.6	19.1	22.1	20.6
Phosphorus	-	-	-	-	-	1040	892	758	587	1650	1520	1690	1080	1910	986	530	539	504	523
Potassium Selenium	-	400	-	-	- 80	< 0.50	1220	< 0.50	< 0.50	1140 < 0.50	0.57	1270	925	< 0.50	< 0.50	495 < 0.50	532 < 0.50	< 0.50	< 0.50
Silver	-	400	-	-	20	1.24	0.243	0.168	0.13	0.245	0.293	0.31	0.33	0.186	0.156	0.152	0.084	0.079	< 0.050
Sodium	-	1,000,000	-	-	-	578	854	850	306	823	642	454	419	331	302	252	300	253	234
Strontium	-	20,000	-	-	-	41.2	54.7	49.6	27.3	53.5	65.5	59	59.6	38.2	40.9	34.4	32.5	32.5	28
in	-	50,000	-	-	50	1.43	1	0.72	0.46	1.23	1.39	1.47	1.54	1.08	0.104	0.65	0.59	0.53	1.78
itanium	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ungsten	-	-	-	-	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
/anadium	-	400	-	-	130	72.7	72.9	60.8	53.7	77	81	82.2	72.6	78.1	80.3	48.2	55.6	56	54.4
linc	200	25,000	123	315	10,000	194	166	132	74	359	378	196	502	273	102	259	187	265	187
urconium	-	-	-	-	-	2.2	2.61	2.06	1.79	2.82	3.17	2.22	2.58	2.34	1.81	2.52	2.61	3.56	3.47
Petroleum Hydrocarbons	0.055	0.000	0.00074		1	0.0000	0.0040	0.000	0.00001	0.014	0.000	0.0040	0.0000	0.000	- 0.0014	0.0044	0.0005	0.000	0.0040
Acenaphthylene	0.055	2,000	0.00587	0.128	-	0.0020	0.0013	0.002	0.00064	0.000	0.009	0.0010	0.0099	0.006	0.0029	0.0041	0.0025	0.002	0.0019
Inthracene	0.15	25,000	0.0469	0.245	-	0.021	0.0075	0.0075	0.0035	0.019	0.018	0.014	0.026	0.0098	0.0022	0.015	0.008	0.008	0.0078
Senz(a)anthracene	0.24	95	0.0317	0.385	-	0.055	0.013	0.013	0.0089	0.055	0.041	0.031	0.15	0.021	0.0048	0.069	0.031	0.043	0.028
Senzo(g,n,i)perylene Senzo[i]fluoranthene		- 95		-		0.11	0.03	0.03	0.018	0.09	0.072	0.06	-	0.033	0.0094	0.12	0.05	0.065	0.05
Senzo(k)fluoranthene	-	95	-	-	-	0.052	0.011	0.011	0.0076	0.05	0.034	0.026	0.16	0.016	0.004	0.075	0.032	0.052	0.033
Benzo(a)pyrene	0.48	10	0.0319	0.782	-	0.087	0.02	0.021	0.014	0.08	0.057	0.047	0.27	0.029	0.0066	0.13	0.049	0.08	0.049
Senzo(b)fluoranthene	-	95	-	-	-	- 0.21	0.031	0.033	-	- 0.17	- 0.12	- 0.11	-	-	- 0.015	- 0.28	0.091	- 0.19	- 0.12
Chrysene	0.53	400	0.0571	0.862	-	0.15	0.033	0.032	0.021	0.13	0.092	0.084	0.00	0.047	0.013	0.19	0.086	0.13	0.078
Dibenz(a,h)anthracene	0.084	10	0.00622	0.135	-	0.02	0.0046	0.0042	0.0032	0.016	0.011	0.011	0.054	0.006	0.0011	0.023	0.0096	0.015	0.01
luoranthene	1.5	3,500	0.111	2.355	-	0.17	0.041	0.051	0.024	0.17	0.15	0.083	0.56	0.077	0.014	0.25	0.12	0.15	0.11
luorene ndeno(1 2 3-c d)ovrene	0.089	1,000	0.0212	0.144	-	0.0076	0.004	0.0046	0.0024	0.015	0.012	0.0049	0.014	0.0098	< 0.0021	0.013	0.01	0.0076	0.0071
-Methylnaphthalene	-	500	-	-	-	-	< 0.020	< 0.042	-	-	-	-	-	-	-	-	< 0.020	-	-
-methylnaphthalene	0.12	100	0.0202	0.201	-	0.0074	0.0036	0.0046	0.0029	0.011	0.0088	0.0094	0.0056	0.0058	< 0.0021	0.0039	0.0038	0.0026	0.003
vapntnalene	0.24	1,500	0.0346	0.391	-	0.005	0.0027	0.0037	0.0016	0.0076	0.0047	0.0049	0.0034	0.0033	< 0.0021	0.0062	0.0078	0.0026	0.0027
Pyrene	0.52	2,500	0.0419	0.875	-	0.051	0.046	0.019	0.025	0.005	0.052	0.031	0.14	0.031	0.0055	0.000	0.031	0.020	0.020
Quinoline	-	4.5	-	-	-	-	< 0.050	< 0.11	-	-	-	-	-	-	-		< 0.050	-	-
PAHs, total	10	-	-	-	-	0.74	0.2	0.22	0.12	0.78	0.61	0.42	2.1	0.35	0.062	1	0.47	0.6	0.44
ndex of Additive Cancer Risk (IACR: unitless)	-	-	-	-	U.6	2.3	0.034	0.034	0.024	0.13 1.9	0.094	1.001	0.45	0.048	0.011	0.21	0.083	0.13	0.083
EPH (C10-C19)	-	1,000	-	-	-	-	< 100	< 100	-	-	-	-	-	-	-	-	< 100	-	-
PH (C19-C32)	-	1,000	-	-	-	-	200	280	-	-		-	-	-	-	-	170		-
Ight Extractable Petroleum Hydrocarbons (LEPH)	-	1,000	-	-	-		-	-	-	-	-	-	-	-	-		-	-	-
,		.,500		1	-														

	1		1	1		1													
Location						RC17-01	RC17-01	RC17-01	RC17-01	RC17-02	RC17-02	RC17-02	RC17-03	RC17-03	RC17-03	RC17-04	RC17-05	RC17-06	RC17-07
Sample Name	BC CSR	BC CSB	CCME	COME Excelourator	COME	PC17-01SED1	PC17-01SED2		RC17-01SED3	RC17-02SED1	PC17-02SED2	RC17-02SED3	PC17-03SED1	RC17-03SED2	RC17-03SED3	PC17-04SED	RC17-05SED	RC17-06SED	PC17-07SED
Sample Name	Sediment Standard	Soil Standard for	Freshwater	Sodimont Guidolino	Soil Guideline for	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 06	2017 12 07
Sample Date	for Freshwater	Users and the state 2	Sediment Guideline	DEL 3	Jumper Health 4	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-00	2017-12-07
Sample Depth	Sensitive Use ¹	Human Health	ISQG ³	PEL	Human Health	0.14 m	0.1 - 0.15 m	0.1 - 0.15 m	0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.22 m	0-0.13 m	0-0.17 m	0-0.19 m	0-0.16 m	0-0.13 m
24/00							EDA	ED											
							FDA	FD											
Pesticides						1													
4,4-DDD	-	-	-	-	-	0.0069	0.0061	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
4,4-DDE	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
4,4-DDT	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
p,p'-DDD	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
,p-DDE	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
DD Total	0.0052		- 0.00254	- 0.00951	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
DDE Total	0.0033		0.00334	0.00675	-	< 0.0009	< 0.0001	-	-	-	-	-	-	-	-		< 0.0040	-	
DDT Total	0.0042		0.00142	0.00073		< 0.0050	< 0.0040										< 0.0040		
DDT + DDD + DDE. Total	-	40	0.00119	0.00477	-	0.0069	0.0061			-	-	-		-			< 0.0040	-	
Aldrin	-	0.8	-	-	-	< 0.0050	< 0.0040		-	-	-	-	-	-	-	-	< 0.0040	-	
alpha-BHC	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
beta-BHC	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
delta-BHC	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	
alpha-Chlordane	0.0055	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Chlordane	-	15	0.0045	0.00887	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Chlordane, technical mixture		-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	
Dieldrin	0.0041	0.85	0.00285	0.00667	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	
Endosultan	-	500	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
apna-endosulfan	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Deta-Endosullari	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Endosullari Sullate	- 0.020	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Endrin Ketone	0.039	9	0.00207	0.0024	-	< 0.0050	< 0.0040		-	-	-		-	-	-		< 0.0040	-	
Endrin Aldehyde	-					< 0.0050	< 0.0040		-	-	-	-	-	-	-		< 0.0040	-	
Heptachlor Epoxide	0.0017	-	-	-		< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Heptachlor	0.0017	3	0.0006	0.00274	-	< 0.0050	< 0.0040			-	-	-		-	-		< 0.0040	-	
Methoxychlor	-	150	-	-	-	< 0.013	< 0.010			-	-	-		-	-	-	< 0.010	-	
Virex	-	0.8	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Octachlorostyrene	-	-	-	-	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	
Foxaphene	-	15	0.0001	-	-	< 0.20	< 0.16	-	-	-	-	-	-	-	-	-	< 0.16	-	-
Polychlorinated Biphenvis																			
Total Polychlorinated Biphenyls (PCBs)	0.17	10	0.0341	0.277	-	0.047	0.045	-	-	-	-	-	-	-	-	-	< 0.030	-	
Aroclor 1016	-	-	-	-	-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Aroclor 1221	-	-	-	-	-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	
Aroclor 1232	-	-	-	-	-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Aroclor 1242	-	-	-	-	-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Aroclor 1248	-	-			-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Aroclor 1254	-	-	0.06	0.340	-	0.047	0.045	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Arocior 1260	-	-		-	-	< 0.038	< 0.030	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Per- and Polyfluoroalkyl Substances 5		•																	
Perfluorooctanoic acid (PFOA)	-	-	-	-	0.7	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Perfluorooctane sulfonate (PFOS)	-	2.5	-	-	2.0	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	
Perfluorobutanoic acid (PFBA)	-	-	-	-	114	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Perfluoroheptanoic Acid (PFHpA)	-	-	-	-	0.8	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	
Pertluorohexane sulfonate (PFHX\xS)	-	-	-	-	2.3	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Perfluorohexanoic Acid (PFHxA)	-	-	-	-	0.8	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
-eniuorononanoic Acid (PENA)	-	-	-	-	0.00	< 0.0030	< 0.0030		-	-	-	-	-	-	-		< 0.0020	-	-
Periluoropenianoic Acid (PEPEA)					0.8	< 0.0030	< 0.0030			-	-						< 0.0020	-	
Perfluorodecanoic Acid (PEDA)	-					< 0.0030	< 0.0030		-	-	-	-	-	-	-		< 0.0020	-	
Perfluorododecanoic Acid (PEDoA)	-	-	-	-		< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	< 0.0030	< 0.0030		-	-	-	-	-	-	-	-	< 0.0020	-	
Perfluorotetradecanoic Acid (PFTEDA)	-	-	-	-	-	< 0.0030	< 0.0030			-	-	-		-	-		< 0.0020	-	
Perfluorotridecanoic Acid (PFTRDA)	-	-	-	-	-	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
perfluorobutane sulphonate (PFBS)	-	650	-	-	61	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	
Perfluoroheptanesulfonic acid	-	-	-	-	-	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Perfluoroundecanoic Acid (PFUnA)	-	-	-	-	-	< 0.0030	< 0.0030	-	-	-	-	-	-	-	-	-	< 0.0020	-	-
Volatile Organic Compounds + BTEX			-	-															
Hexachlorobenzene	- I	65	-	-	20	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	
indane (Hexachlorocyclohexane)	0.00086	2	0.00094	0.00138	-	< 0.0050	< 0.0040	-	-	-	-	-	-	-	-	-	< 0.0040	-	-
Methyl tert-Butyl Ether	-	8,000	-	-	-	< 0.10	< 0.31	-	-	-	-	-	-	-	-	-	< 0.10	-	-
Styrene	-	15,000	-	-	5.0	< 0.030	< 0.093	-	-	-	-	-	-	-	-	-	< 0.030	-	-
Benzene		350	-	-	11	< 0.0050	< 0.016	-	-	-	-	-	-	-			< 0.0050	-	
Foluene	-	6,500	-	-	22,000	< 0.020	< 0.062	-	-	-	-	-	-	-	-	-	0.022	-	-
Ethylbenzene	-	8,500	-	-	10,000	< 0.010	< 0.031	-	-	-	-	-	-	-	-	-	< 0.010	-	-
p-Xylene	-	-	-	-	-	< 0.040	< 0.12	-	-	-	-	-	-	-	-	-	< 0.040	-	-
n,p-xyienes		-	-	-	-	< 0.040	< 0.12	-	-	-	-	-	-	-	-	-	< 0.040	-	-
NORTHER LONG		15,000	-		150,000	< 0.040	< 0.12	-	-			-	-	-		-	< 0.040	-	

Notes: All parameter units in milligrams per kilogram (mg/kg), unless otherwise noted. OA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available: FD = Field Duplicate FDA = Field Duplicate Available: FD = Field Duplicate I indicates parameter was below laboratory equipment detection limit. Fail/s: indicates the laboratory detection limit was greater than the standard '-' indicates no standard or parameter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylinaphthalene, naphthalene, phenanthrene, and pyrene). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion pathway to protect human health. If a pathway specific guideline was not available, the generic guideline was applied (residential / parkand [RL/PL] land use). 1 in 100.000 cancer risk level.
 Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroallylated Substances (PFAS). May 2019.

	······
Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline (ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

Data Sources WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report) Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.

Location						RC17-08	RC17-09	RC17-10	RC17-11	RC17-12	RC17-13	RC17-14	RC17-15	RC17-16	RC17-17	RC17-17	SED2
Sample Name	BC CSR	BC CSR	CCME	CCME Freshwater	COME	RC17-08SED	RC17-09SED	RC17-10SED	RC17-11SED	RC17-12SED	RC17-13SED	RC17-14SED	RC17-15SED	RC17-16SED	RC17-17SED	RC17-DUP2SED	1441:
Sample Date	Sediment Standard	Soil Standard for	Freshwater	Sediment Guideline	Soil Guideline for	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2017-12-07	2021-0
Cample Date	for Freshwater	Users and Userskin 2	Sediment Guideline		Uluman Usalth 4	2011-12-07	2011-12-07	2011-12-07	2011-12-07	2017-12-07	2011-12-01	2017-12-07	2011-12-07	2017-12-07	2011-12-07	2017-12-07	2021-0
Sample Depth	Sensitive Use ¹	Human Health	ISQG ³	PEL	Human Health	0=0.12 m	0-0.19 m	0-0.09 m	0-0.15 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.05 m	0-0.05 m	0.5-0
QA/QC															FDA	FD	
Field and Physical																	
pH	-	-	-	-	-	5.79	6.43	6.94	6.7	6.66	7.15	6.22	6.74	6.76	7.07	7.04	6.6
Sieve (>19mm) (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sieve - #4 (>4.75mm) (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sieve - #200 (>0.075mm) (%)	-	-	-	-	-	58.5	49.9	51.3	63.2	94.4	76.8	69.9	41.5	42.9	62.3	73.3	3
Texture		-	-	-	-	-	-	-	-	-	-	-		-	-	-	Fin
Clay (%)																	
Gravel (%)																	
Cravel (%)	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Sand (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silt (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Texture	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.4
Total Organic Carbon (%)	-	-	-	-	-	3.7	4.1	1.5	4.3	0.15	0.85	2.5	1.9	1.4	1.8	1.3	5.3
Total Inorganic Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	0.0
Matala									•		•	-			-		
wetais		40.000				45700	40700	40500	47400	40000	45000	40.400	45000	00400	00000	00000	
Aluminum	-	40,000	-			15700	18700	19500	17100	10900	15800	18400	15900	22100	23800	23800	-
Antimony	-	500	-	-	20	0.69	0.29	0.23	0.44	0.13	0.25	0.44	0.44	0.47	0.48	0.45	
Arsenic	11	40	5.9	17	31	5.19	5.32	4.25	8.56	3.03	5.08	4.53	3.94	6.38	9.18	7.4	3.4
Barium	-	15,000	-	-	6,800	83.7	100	91.9	91	54.3	77.3	101	74.9	111	111	129	-
Beryllium	-	150	-		75	0.31	0.46	0.4	0.34	0.23	0.3	0.31	0.3	0.48	0.47	0.45	-
Bismuth		-	-	-		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	-
Boron	-	15000	-			6.3	4.8	3.8	6.5	2	3.3	4.3	3.4	5.1	4.3	3.7	-
Cadmium	22	40	0.6	3.5	14	4 99	3.73	1.26	35	0.972	2.33	8.27	1.37	8.44	2.46	2.27	0.2
Calcium			0.0	0.0		7630	5870	5570	6870	7480	6090	6670	5730	6340	6440	6600	0.2
Chromium	56	250	37.0	00	220	40.7	47.4	37.0	154	18.0	3/ 5	50	310	62.4	57.7	5000	-
Ohmonium	50	200	31.3	90	220	42.1	47.1	31.2	104	10.9	34.0		31.2	02.4	51.1		44
Chromium Trivalent (Cr(III))	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	44
Chromium Hexavalent (Cr(VI))	-		-	-											-		<0
Cobalt		25	-	-	50	11.9	14.6	15.6	12.2	9.02	13.2	13.5	12.2	18.7	18	19.7	-
Copper	120	7,500	35.7	197	1,100	41.1	27.5	22.3	28.8	21.4	38	32.3	30.3	40	41.2	44.7	-
Iron	-	35,000	-	-	-	22,400	26,400	29,300	25,100	19,900	27,400	26,800	24,300	37,200	39,700	45,900	-
Lead	57	120	35	91.3	140	17.6	12.4	7.14	16.3	4.74	10.8	22.3	8.3	20.7	10.8	10.3	-
Lithium	-	65	-	-	-	9.4	16	16.6	13.9	7.1	12.1	11.2	12.7	20.4	19.4	16.5	-
Magnesium		-	-	-		-	-	-	-	-	-				-		-
Manganese	-	10 000	-	-	-	528	554	717	459	414	871	665	512	631	930	1040	
Mercury	0.3	25	0.17	0.486	6.6	0.056	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.05	< 0.050	< 0.050	< 0.050	< 0.050	
Molubdonum	0.0	400	0.11	0.100	10	1 22	0.66	0.60	1.82	0.4	0.6	0.88	0.52	0.72	0.00	1 23	
Nichol	-	400		-	10	00.5	0.00	0.00	0.02	40.4	0.0	0.00	0.02	0.72	0.00	1.20	-
NICKEI	-	900	-	-	200	22.5	25.9	23.0	23.0	13.1	21.3	24.0	22.0	37.6	30.3	30	-
Phosphorus	-	-	-	-	-	684	1040	704	925	1840	795	1080	616	963	864	912	-
Potassium	-	-	-	-	-	669	704	708	748	300	645	759	639	1090	1020	1080	-
Selenium		400	-	-	80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	-
Silver	-	400	-	-	20	0.148	0.107	0.075	0.155	< 0.050	0.103	0.106	0.05	0.073	0.06	0.06	-
Sodium	-	1,000,000	-	-	-	353	361	281	337	187	284	296	252	376	342	363	-
Strontium	-	20,000	-	-	-	40.4	36.5	32.7	40.5	30.1	35.1	38.4	28.4	40.6	38.7	40.8	-
Thallium		-	-	-	1	0.061	0.071	0.066	0.064	< 0.050	< 0.050	0.06	0.055	0.073	0.079	0.079	-
Tin	-	50 000	-	-	50	1.48	0.76	0.74	0.85	0.28	0.58	1.39	4 72	8.83	4 11	3.21	
Titanium									-		-						
Tungatan	-	-	-		-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Ironium	-	250	-	-		1.01	0.30	< 0.30 0.627	0.50	0.00	0.30	0.30	< 0.50	0.50	< 0.00	0.00	-
Uranium	-	200		-	23	1.01	0.74	0.037	0.859	0.209	0.471	0.725	0.495	0.526	0.03	0.007	-
vanadium	-	400	-	-	130	50.3	69	70.9	62.5	45.4	61.7	/0.2	02.9	62.9	61.9	65.3	1 -
Zinc	200	25,000	123	315	10,000	319	135	127	131	129	1/4	179	114	120	161	1/4	/5
Zirconium	-	-	-		-	2.42	2.67	1.65	1.87	2.21	1.76	2.86	2.19	4.51	2.83	3.32	-
Petroleum Hydrocarbons																	
Assessments	0.055	0.000	0.00074	0.0000		0.007	0.012	< 0.00050	0.0045	< 0.000E0	0.00092	0.0025	0.00092	0.00072	< 0.00050	0.00052	
Acenaphtivlene	0.000	2,000	0.00071	0.0009		0.0079	0.015	0.00050	0.0040	0.0010	0.00002	0.0023	0.00003	0.00072	0.00050	0.00032	-
Acenaprili i viene	0.06	-	0.00007	0.120	-	0.0073	0.0015	0.00055	0.004	0.0019	0.012	0.0027	0.0014	0.0013	0.00051	0.0010	-
Anunacene	0.15	25,000	0.0469	0.245		0.0096	0.0044	< 0.0010	0.013	0.0021	0.0023	0.0000	0.0020	0.0020	0.0013	0.0013	-
penz(a)anthracene	U.24	95	0.0317	U.385	-	0.052	0.0044	0.0024	0.013	0.0043	0.012	0.022	0.012	0.011	0.0045	0.0054	-
benzo(g,n,i)perylene	-		-		-	0.092	0.0088	0.0051	0.022	0.009	0.02	0.037	0.025	0.013	0.0077	0.012	-
Benzojjitiuoranthene	-	95	-		-	-						-					-
Benzo(k)fluoranthene		95	-	-	-	0.056	0.0038	0.0029	0.011	0.0048	0.012	0.021	0.014	0.0084	0.0051	0.0064	-
Benzo(a)pyrene	0.48	10	0.0319	0.782	-	0.085	0.0059	0.0036	0.017	0.0086	0.02	0.035	0.022	0.015	0.0075	0.0096	-
Benzo(b)fluoranthene		95	-	-	-	-	-	-	-	0.012	-	-	-	-	0.012	-	-
Benzo(b,j) fluoranthene	-	95	-		-	0.21	0.015	0.011	0.041	0.017	0.048	0.07	0.047	0.03	0.018	0.024	-
Chrysene	0.53	400	0.0571	0.862		0.17	0.012	0.0051	0.03	0.012	0.032	0.046	0.035	0.024	0.013	0.016	-
Dibenz(a,h)anthracene	0.084	10	0.00622	0.135		0.015	0.0013	0.00093	0.0042	0.0019	0.0041	0.0073	0.0046	0.0028	0.0013	0.0024	-
Fluoranthene	1.5	3 500	0.111	2 3 5 5		0.23	0.023	0.011	0.06	0.015	0.045	0.084	0.048	0.034	0.02	0.022	-
Elucrene	0.000	1,000	0.0242	2.300		0.014	0.023	< 0.0010	0.000	< 0.0010	0.045	0.004	0.040	0.004	0.02	0.022	-
Indone/1 2 2 e d)aurene	0.009	1,000	0.0212	U. 144		0.014	0.0052	~ 0.0010	0.0002	0.00010	0.0013	0.0009	0.0022	0.0029	0.0010	0.0010	-
A Mathedra a bit along	-	90	-		-	0.075	0.0052	0.0046	0.010	0.0061	0.016	0.031	0.022	0.012	0.000	0.011	-
1-meurymaphunalene	-	500	-		-	-	-	-	-	< 0.020	-	-	-	-	< 0.020	-	-
2-methylnaphthalene	0.12	100	0.0202	0.201	-	0.0079	0.0028	< 0.0010	0.0089	< 0.0010	0.0014	0.0022	0.0017	0.0026	< 0.0010	< 0.0010	-
Naphthalene	0.24	1,500	0.0346	0.391	-	0.0098	< 0.0010	< 0.0010	0.0032	< 0.0010	< 0.0010	0.0019	0.0013	0.002	< 0.0010	< 0.0010	-
Phenanthrene	0.32	3,500	0.0419	0.515	-	0.061	0.014	0.0037	0.019	0.0056	0.012	0.026	0.013	0.013	0.0054	0.0056	-
Pyrene	0.54	2,500	0.053	0.875	-	0.19	0.022	0.012	0.071	0.015	0.038	0.076	0.042	0.032	0.02	0.024	-
Quinoline	-	4.5	-	1 .		-	_	-	-	< 0.050	-	-		-	< 0.050	-	-
PAHs total	10	-	-		-	0.86	0.12	0.038	0.26	0.067	0.18	0.32	0.19	0.14	0.075	0.09	
Benzo(a)pyrene Total Potency Equivalence (TPE)	-	-	-		0.6	0.14	0.01	< 0.010	0.03	0.014	0.033	0.058	0.036	0.025	0.012	0.017	-
Index of Additive Cancer Rick (IACR: unitless)			1		0.0	23	0.16	0.11	0.45	0.10	0.51	0.8	0.53	0.34	0.10	0.25	-
EDH (C10, C10)	-	1 000	-		-	2.3	0.10	U.11	0.40	U.19 < 100	0.01	0.0	0.03	0.34	v.19 < 100	0.20	-
EFH (C10 C22)	-	1,000	-	-	-	-	-	-	-	~ 100	-	-	-	-	~ 100	-	-
EFFI (G13-G32)	-	1,000	-		-	-	-	-	-	< 100	-	-	-	-	< 100	-	-
Light Extractable Petroleum Hydrocarbons (LEPH)	-	1,000	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Heavy Extractable Petroleum Hydrocarbons (HEPH)	-	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

7	SED21-04	SED21-05	SED21-05
SED	14412-08	14412-09	14412-10
07	2021-06-14	2021-06-14	2021-06-14
n	0.5-0.6 m	0-0.2 m	0-0.2 m
		FDA	FD
	6.61	6.30	6.22
	-		-
	-	-	-
	Fine	Fine	Fine
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	5.42	8.19	7.81
	5.38	8.15	7.78
	0.04	0.04	0.03
			-
	-		
	3.4	5.5	6.3
			-
	-		-
_			
	0.25	8.46	11.7
Т	42	52	77
	42	52	77
	<0.4	<8	<8
	-		-
	-		-
	-		-
	-	-	-
	-		-
)	-		-
	-	-	-
	-	-	-
	-		
	-	-	-
	-	-	-
	-	-	-
			-
	-	-	-
	-		
	2		-
	-		
	79	371	405
2	-	-	-
	-	-	
	-	-	-
	-		-
	-	-	-
	-		-
	-		-
	-	-	-
	-		-
			-
	-	-	-
			-
U N		-	-
			-
	-	-	-
			-
			-
	-		-
	-	-	-
	:		
	-	-	-

Location Sample Name Sample Date Sample Depth	BC CSR Sediment Standard for Freshwater Sensitive Use ¹	BC CSR Soil Standard for Human Health ²	CCME Freshwater Sediment Guideline ISQG ³	CCME Freshwater Sediment Guideline PEL ³	CCME Soil Guideline for Human Health ⁴	RC17-08 RC17-08SED 2017-12-07 0-0.12 m	RC17-09 RC17-09SED 2017-12-07 0-0.19 m	RC17-10 RC17-10SED 2017-12-07 0-0.09 m	RC17-11 RC17-11SED 2017-12-07 0-0.15 m	RC17-12 RC17-12SED 2017-12-07 0-0.1 m	RC17-13 RC17-13SED 2017-12-07 0-0.1 m	RC17-14 RC17-14SED 2017-12-07 0-0.1 m	RC17-15 RC17-15SED 2017-12-07 0-0.1 m	RC17-16 RC17-16SED 2017-12-07 0-0.1 m	RC17-17 RC17-17SED 2017-12-07 0-0.05 m	RC17-17 RC17-DUP2SED 2017-12-07 0-0.05 m	SED21-04 14412-08 2021-06-14 0.5-0.6 m	SED21-05 14412-09 2021-06-14 0-0.2 m	SED21-05 14412-10 2021-06-14 0-0.2 m
QA/QC															FDA	FD		FDA	FD
Pesticides																			
4,4-DDD	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
4,4-DDE	-	-	-		-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	- 0.000	-
4,4-DD1	-	-			-	-	-	-	-	< 0.0020	-		-	-	< 0.0030		< 0.003	< 0.003	< 0.003
o,p'-DDE	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
o,p'-DDT	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	< 0.003	< 0.003	< 0.003
DDD, Total	0.0053	-	0.00354	0.00851	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
DDE, Total	0.0042	_	0.00142	0.00477	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	< 0.007	< 0.007	< 0.007
DDT + DDD + DDE, Total	-	40	0.00119	0.00477	-	-	-	-	-	< 0.0020	-		-		< 0.0030	-	< 0.007	< 0.007	< 0.007
Aldrin	-	0.8	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
alpha-BHC		-			-		-			< 0.0020	-	-	-	-	< 0.0030		-	-	-
delta-BHC		-				-	-	-	-	< 0.0020	-		-		< 0.0030		-		-
alpha-Chlordane	0.0055	-	-	-	-	-	-	-	-	< 0.0020	-		-		< 0.0030	-	-		
Chlordane	-	15	0.0045	0.00887	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Chlordane, technical mixture	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Endosulfan	-	500	-	0.00007	-		-	-	-	< 0.0020	-	-	-	-	< 0.0030	-		-	-
alpha-Endosulfan	-	-	-	-	-	-	-	-	-	< 0.0020	-		-	-	< 0.0030	-			-
beta-Endosulfan	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-		-	-
Endosultan Sultate	-	-	-	-	-	-	-	-	-	< 0.0020	-		-	-	< 0.0030		-		-
Endrin Ketone	0.039	-	0.00207	-	1	1	-	-		< 0.0020					< 0.0030				-
Endrin Aldehyde	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Heptachlor Epoxide	0.0017	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Heptachlor	0.0017	3	0.0006	0.00274	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Mirex		0.8			-	-	-	-	-	< 0.0050	-		-	-	< 0.0075		-		-
Octachlorostyrene	-	-	-	-	-	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Toxaphene	-	15	0.0001	-	-	-	-	-	-	< 0.080	-	-	-	-	< 0.12	-	-	-	-
Polychlorinated Biphenyls			1																
Total Polychlorinated Biphenyls (PCBs)	0.17	10	0.0341	0.277	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023	-	-	-	-
Aroclor 1010	-	-	-	-	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023	-	-	-	-
Aroclor 1232	-	-	-	-	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023	-	-	-	-
Aroclor 1242	-	-	-	-	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023	-	-	-	-
Aroclor 1248 Aroclor 1254	-	-	-	- 0.240	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023	-	-	-	-
Aroclor 1254 Aroclor 1260	-	-	-	-	-	-	-	-	-	< 0.015	-	-	-	-	< 0.023		-	-	-
Par- and Polyfluoroalkyl Substances 5			-	-															
Perfluorooctanoic acid (PFOA)	-	-	-	-	0.7	-	-	-	-	< 0.0010	-		-	-	< 0.0020	-	-		-
Perfluorooctane sulfonate (PFOS)	-	2.5	-	-	2.0	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluorobutanoic acid (PFBA)	-	-	-	-	114	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluoroneptanoic Acid (PEHpA) Perfluoronexane sulfonate (PEHX\xS)	-	-	-	-	2.3	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluorohexanoic Acid (PFHxA)	-	-	-	-	0.8	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluorononanoic Acid (PFNA)	-	-	-	-	0.08	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluoropentanoic Acid (PFPeA)	-	-	-	-	0.8	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluorodecanoic Acid (PFDA)		1]	1 1	1	1	-	-		< 0.0010					< 0.0020				-
Perfluorododecanoic Acid (PFDoA)	-	-	-	-	-	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-		-	-
Pertiuorotetradecanoic Acid (PFTEDA)			1	-	-	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020		-	-	-
perfluorobutane sulphonate (PFBS)	-	650	-	-	61	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Perfluoroheptanesulfonic acid	-	-	-	-	-	-	-	-	-	< 0.0010	-		-		< 0.0020	-	-		
Perfluoroundecanoic Acid (PFUnA)	-	-	:		-	-	-	-	-	< 0.0010	-	-	-	-	< 0.0020	-	-	-	-
Volatile Organic Compounds + BTEX																			
Hexachlorobenzene	-	65	-	-	2.0	-	-	-	-	< 0.0020	-	-	-	-	< 0.0030	-	-	-	-
Lindane (Hexachlorocyclonexane) Methyl tert-Butyl Ether	0.00086	2 8 000	0.00094	0.00138	-		-			< 0.0020	-	-	-	-	< 0.0030		-	-	-
Styrene	-	15,000	-	-	5.0	-	-	-	-	< 0.030	-	-	-	-	< 0.030	-	-	-	-
Benzene	-	350	-	-	11	-		-	-	< 0.0050					< 0.0050	-			-
Toluene	-	6,500	-	-	22,000	-	-	-	-	< 0.020	-	-			< 0.020	-	-	-	-
Etnylbenzene		8,500			10,000		-			< 0.010	-	-	-	-	< 0.010		-	-	-
m,p-Xylenes	-	-		-	-	-	-	-	-	< 0.040	-	-	-	-	< 0.040	-		-	-
Xylenes, Total	-	15,000	-	-	150,000	-		-		< 0.040					< 0.040	-			-
Notes: All parameter units in miligrams per kilogram (mg/kg), unless of OA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available; FD = Field Duplicate Indicates parameter was below laboratory equipment detection Italics indicates the laboratory detection limit was greater than "-" indicates no standard or parameter was not analysed	otherwise noted. on limit. the standard																		

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated Soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

4. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion pathway to protect human health. If a pathway specific guideline was not available, the generic guideline was applied (residential / parkiand [RL/PL] land use). 1 In 100.000 cancer risk level. 5. Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroalkylated Substances (PFAS). May 2019.

	5
Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline (ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

Data Sources
WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report)
Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA
SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.

				1															
Location						SED21-06	SED21-07	SED21-08	SED21-09	SED21-10	SED21-11	SED21-12	SED21-12	SED21-13	SED21-13	SED21-14	SED21-15	SED21-16	SED21-17
	BC CSB		COME																-
Sample Name	BUUSK	BC CSR	COME	CCME Freshwater	CCME	14412-11	14414-12	14415-01	14412-12	14413-01	14413-02	14413-03	14413-04	14414-09	14414-10	14414-11	14413-06	14413-05	14414-02
Sample Date	Sediment Standard	Soil Standard for	Freshwater	Sodimont Guidalino	Soil Guideline for	2021 06 14	2021 06 15	2021 06 15	2021 06 14	2021 06 14	2021 06 14	2021 06 14	2021 06 14	2021 06 15	2021 06 15	2021 06 15	2021 06 14	2021.06.14	2021 06 15
Sample Date	for Freshwater	2	Sediment Guideline		Son Guidenne Ior	2021-00-14	2021-00-15	2021-00-15	2021-00-14	2021-00-14	2021-00-14	2021-00-14	2021-00-14	2021-00-15	2021-00-15	2021-00-15	2021-00-14	2021-00-14	2021-00-15
Sample Depth	Soneitivo Lleo ¹	Human Health *	1506 3	PEL °	Human Health	0-0.2 m													
	Senaltive Gae		1000																
QA/QC												FDA	FD	FDA	FD				
Field and Divercal																			
				1		5.04	0.07	5.04	0.50	E 00	0.40	5.00	E 70	0.00	0.00	0.04	0.00	0.0	0.70
	-	-	-	-	-	0.04	0.07	5.64	0.03	5.29	0.10	5.90	5.73	0.20	0.32	0.34	0.32	0.2	0.72
Sieve (>19mm) (%)	-	-	-	-	-	< 1	< 1	< 1	< 1	-	< 1	< 1	< 1	12	< 1	< 1	< 1	< 1	< 1
Sieve - #4 (>4.75mm) (%)	-	-	-	-	-	< 1	< 1	< 1	< 1	-	< 1	< 1	< 1	50	< 1	< 1	< 1	< 1	13
Sieve - #200 (>0.075mm) (%)	-	-	-		-	23	37	3	11	27	52	68	62	99	24	28	53	36	80
Texture						Eine	Eine	Eine	Eine	Eine	Coarea	Coarea	Coarea	Coarea	Eine	Eine	Coarea	Eine	Coarea
Clay (%)						1 110	1	1 110	1 110	1 110	000100	000100	000100	000100	1 110	1 110	000100	1 110	000100
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Gravel (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sand (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silt (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil Texture	-	-	-		-	-			-				-						-
Total Carbon (%)	-		-		-	3 19	6.57	4	5 43	12.5	4 75	4 96	2 29	3 27	3 15	4 67	6	4 12	3 46
Total Organic Carbon (%)						3.19	6.50	4 00	5.41	12.4	4 72	4.96	2 29	3.24	3.12	4.67	5.95	4 12	3.43
Total Organic Garbon (%)	-	-	-	-	-	10.00	0.00	4.00	0.00	0.07	4.72	4.00	10.00	0.00	0.02	4.07	0.05	4.12	0.00
I dai inorganic Carbon (%)	-	-	-	-	-	< 0.02	0.07	< 0.02	0.02	0.07	0.03	< 0.02	< 0.02	0.03	0.03	< 0.02	0.05	< 0.02	0.03
Metals																			
Aluminum	-	40 000	-	-	-	27500	18800	30400	26300	20900	-		-	20800	21400	19400	19400	23500	-
Antimony		500			20	0.6	0.8	0.5	0.7	0.8				0.5	0.5	0.6	0.5	0.6	
Amonio	- 11	40	5.0	17	20	6.0 E.4	6.1	7.0	7.2	5.0	-	6.2	7	7.4	6.5	5.5	22.4	6	0.1
Alsenic		40	0.9	17	31	3.4	0.1	1.2	1.2	3.2	5	0.3	'	1.4	5.7	0.0	22.4	0	9.1
Barium	-	15,000	-	-	6,800	101	113	116	123	106	-	-	-	104	110	107	97.1	113	-
Beryllium	-	150	-	-	75	0.4	0.4	0.5	0.4	0.3	-	-	-	0.4	0.4	0.4	0.3	0.4	-
Bismuth	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
Boron	-	15000	-			-					-		-					-	
Cadmium	22	40	0.6	3.5	14	5.95	9.47	2.58	13.3	5.22	9.02	14 7	5.27	12.4	11.9	9.36	43	11.1	19.2
O alainen	2.2	-10	0.0	0.0		0.00	0000	2.00	0070	7400	0.02	14.1	0.21	0040	7450	7000	0700	7050	
Calcium	-	-		-	-	0220	9030	0040	0070	/ 190	-	-		0010	7150	7360	0/20	7930	-
Chromium	56	250	37.3	90	220	/1	54	54	85	48	/1	73	42	/1	63	60	43	68	95
Chromium Trivalent (Cr(III))	-	-	-	-	-	71	54	54	85	48	71	73	42	71	63	60	43	68	95
Chromium Hexavalent (Cr(VI))	-	-	-	-	-	<4	<8	<8	<8	<8	<4	<8	<8	<8	<8	<8	<8	<8	<8
Cobalt	-	25	-	-	50	12.3	12.5	15	14.9	12.4	-	-	-	13.8	12	11.4	11.8	14	-
Copper	120	7 500	35.7	197	1 100	39.2	48.2	40.7	49	54 7	-		-	38.1	33.7	37.3	40.6	44 4	-
Iron		35,000			.,	33,500	27 700	37 500	31 300	26 700				28,900	30,900	27 700	31 200	31,000	4
Lood	57	120	25	01.2	140	40.1	20,700	22	40.7	22,100				20,000	20.000	21,700	10.9	24.4	
Leau	57	120	35	91.5	140	49.1	29	23	43.7	23.7	-	-	-	29.2	20.0	31.0	19.0	34.4	-
Lithium	-	60	-	-	-	17.0	13	22.7	17.9	13.9	-	-	-	14.6	14.7	14	11.7	15	-
Magnesium	-	-	-	-	-	7,680	5,700	8,960	7,030	5,510	-	-	-	6,180	6,400	5,630	6,160	7,200	-
Manganese	-	10,000	-	-	-	457	1,230	813	1,470	1,120	-	-	-	770	843	1,050	1,710	1,710	-
Mercury	0.3	25	0.17	0.486	6.6	0.07	0.06	0.06	0.1	0.08	-	-	-	0.05	0.06	0.06	0.04	0.06	-
Molybdenum	-	400	-	-	10	0.6	0.9	0.9	1.1	1.5	-	-	-	0.7	0.7	0.9	0.8	1	-
Nickel	-	900	-	-	200	30.5	23.9	34.9	32.3	25.5	-	-	-	28	24.7	24.3	21.3	28.9	-
Phosphorus	-			-	-	826	1300	827	1480	1140	-		-	1240	1420	1250	1210	1160	-
Potassium						020	001	1000	1100	1010				763	830	761	807	830	
Solonium	-	400	-	-	-	0.6	1.0	0.9	0.6	0.0				0.6	0.6	0.7	0.4	0.5	-
Jelenium	-	400	-	-	00	0.0	1.2	0.0	0.0	0.8	-	-	-	0.0	0.0	0.7	0.4	0.0	-
Silver	-	400	-	-	20	< 0.5	< 0.5	0.7	< 0.5	< 0.5	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
Sodium	-	1,000,000	-	-	-	601	780	575	392	572	-	-	-	316	343	365	355	449	-
Strontium	-	20,000	-	-	-	39	72	47	61	47	-	-	-	44	49	53	44	46	-
Thallium	-		-		1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-		-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Tin		50.000			50	1.1	1.6	1.4	1.4	1.5				1	1	1.1	1	1.4	
Titerium	-	50,000	-	-	50	4.000	000	1.4	4 4 4 0	0.07				000	004	0.04	045	704	-
Titanium	-	-	-	-	-	1,290	900	1,040	1,110	037	-	-	-	623	921	001	615	/31	-
Tungsten	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium	-	250	-	-	23	0.8	1.1	1	1.1	1.2	-	-	-	0.8	0.8	0.9	0.6	0.9	-
Vanadium	-	400		-	130	72	55	85	74	58	-	-	-	66	60	58	51	67	-
Zinc	200	25,000	123	315	10,000	186	394	173	333	371	272	268	224	228	193	280	301	318	134
Zirconium	-	-	-	-	-	0.8	1.5	1.3	0.9	0.8	-	-	-	1.1	0.9	1.4	0.9	0.9	-
Petroleum Hydrocarbons				_															
Acenaphthene	0.055	2,000	0.00671	0.0889	-	< 0.005	-	-	-	-	-	-	-	< 0.005	< 0.005	0.007	-	-	-
Acenaphthylene	0.08	-	0.00587	0.128	-	< 0.005	-	-	-	-	-	-	-	< 0.005	< 0.005	0.007	-	-	-
Anthracene	0.15	25,000	0.0469	0.245	-	0.007	-	-	-		-	-	-	0.009	0.007	0.029	-		-
Benz(a)anthracene	0.24	95	0.0317	0.385		< 0.03	-	-	-	-		-		0.04	0.04	0.17	-		
Benzo(a h i)nervlene						< 0.05								0.06	0.07	0.39			
Benzolijfuoranthene		-	-	-	-	< 0.00	-		-	-	-	-		0.00	0.07	0.33			-
Benzoljiluoraninene	-	95	-	-	-	< 0.02	-	-	-	-	-	-	-	0.02	0.03	0.11	-	-	-
Benzo(k)fluoranthene	-	95	-	-	-	< 0.02	-	-	-	-	-	-	-	0.04	0.04	0.16	-	-	-
Benzo(a)pyrene	0.48	10	0.0319	0.782	-	< 0.03	-	-	-	-	-	-	-	0.05	0.05	0.25	-	-	-
Benzo(b)fluoranthene	-	95	-	-	-	0.03	-	-	-	-	-	-	-	0.09	0.09	0.41	-	-	-
Benzo(b,j) fluoranthene	-	95	-	-	-	0.03	-	-	-	-	-	-	-	0.11	0.12	0.52	-	-	-
Chrysene	0.53	400	0.0571	0.862		< 0.05					-		-	0.06	0.06	0.26	-	-	
Dibenz(a h)anthracene	0.084	10	0.00622	0.135		0.008								0.011	0.000	0.066			
Elugraphiana	0.004	0 500	0.00022	0.155	-	0.000								0.011	0.11	0.000			-
Fluoranulene	1.5	3,500	0.111	2.300	-	0.00	-	-	-		-	-	-	0.1	0.11	0.40	-		-
riuorene	0.089	1,000	0.0212	U.144	-	< 0.02	-	-	-	-	-	-	-	< 0.02	< 0.02	< 0.02	-		-
Indeno(1,2,3-c,d)pyrene	-	95	-	-	-	< 0.02	-	-	-			-	-	0.04	0.05	0.26	-		-
1-Methylnaphthalene	-	500	-	-	-	< 0.005	-	-	-	-	-	-	-	< 0.005	< 0.005	< 0.005	-	-	-
2-methylnaphthalene	0.12	100	0.0202	0.201	-	< 0.005	-	-	-	-	-	-	-	< 0.005	< 0.005	< 0.005	-	-	-
Naphthalene	0.24	1,500	0.0346	0.391		< 0.005		-			-	-	-	< 0.005	< 0.005	< 0.005	-		-
Phenanthrene	0.32	3 500	0.0419	0.515		0.02								0.03	0.04	0.15			
Pyrene	0.54	2 500	0.053	0.875		0.04							. I	0.08	0.04	0.33			
Quindine	0.04	4.500	0.000	0.070	-	C.04	-		-	-		-		< 0.05	< 0.00	C.00E	- <u>-</u>		-
	-	4.0	-	-	-	< 0.00	-	-	-	-	-	-	-	< U.U.	< 0.00	< 0.00	-	-	-
PARIS, IOIAI	10	-	-	-	-	0.200	-	-	-	-	-	-	-	0.400	0.416	1./34	-		-
Benzo(a)pyrene Total Potency Equivalence (TPE)	-	-	-	-	0.6	< 0.05	-	-	-	-	-	-	-	0.09	0.09	0.43	-	-	-
Index of Additive Cancer Risk (IACR; unitless)	-	-	-	-	-	< 0.6	-	-	-	-	-	-	-	1.3	1.4	6	-	-	-
EPH (C10-C19)	-	1,000	-	-	-	< 20	-	-	-			-	-	< 20	< 20	32	-	-	-
EPH (C19-C32)	-	1,000	-	-	-	83	-	-	-	-	-	-	-	79	83	157	-	-	-
Light Extractable Petroleum Hydrocarbons (LEPH)	-	1.000	-	-	-	< 20	-	-	-	-	-	-	-	< 20	< 20	32	-		-
Heavy Extractable Petroleum Hydrocarbone (HEDH)		1,000		-		83								70	83	155			
		1,000	-	1	-	00													

Location						SED21-06	SED21-07	SED21-08	SED21-09	SED21-10	SED21-11	SED21-12	SED21-12	SED21-13	SED21-13	SED21-14	SED21-15	SED21-16	SED21-17
Sample Name	BC CSR	BC CSR	CCME	CCME Freshwater	CCME	14412-11	14414-12	14415-01	14412-12	14413-01	14413-02	14413-03	14413-04	14414-09	14414-10	14414-11	14413-06	14413-05	14414-02
Sample Date	Sediment Standard	Soil Standard for	Freshwater	Sediment Guideline	Soil Guideline for	2021-06-14	2021-06-15	2021-06-15	2021-06-14	2021-06-14	2021-06-14	2021-06-14	2021-06-14	2021-06-15	2021-06-15	2021-06-15	2021-06-14	2021-06-14	2021-06-15
Sample Depth	For Presnwater	Human Health ²	Sediment Guideline	PEL 3	Human Health ⁴	0-0.2 m													
	Sensitive Ose		1340																
QA/QC Pasticidas												FDA	FD	FDA	FD				
		1	1	1															
4,4-DDD 4 4-DDE	-	-	-	-	-	-		-	-								-	-	-
4,4-DDT	-	-	-	-	-	< 0.003	-	-	-	-	-	-	-	< 0.003	< 0.003	< 0.003	-	-	-
o,p'-DDD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o,p'-DDE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.000	-	-	-	-
0,p-DU I DDD. Total	0.0053		- 0.00354	- 0.00851	-	< 0.003	-	-	-	-	-	-	-	< 0.003	< 0.003	< 0.003		-	-
DDE. Total	0.0042	-	0.00142	0.00675	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT, Total	0.003	-	0.00119	0.00477		< 0.007		-	-				-	< 0.007	< 0.007	< 0.007	-	-	-
DDT + DDD + DDE, Total	-	40	0.00119	0.00477		< 0.007	-	-	-		-		-	< 0.007	< 0.007	< 0.007	-	-	-
Aldrin	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
heta_BHC	-	-	-	-	-	-		-	-		-		-		-	-		-	-
delta-BHC		-	-	-	-	-		-	-		-		-		-		-	-	-
alpha-Chlordane	0.0055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane	-	15	0.0045	0.00887		-	-	-	-		-		-		-	-	-	-	-
Criordane, technical mixture	-	- 0.85	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan	-	500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
alpha-Endosulfan	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
beta-Endosulfan	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan Sulfate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin Endrin Ketope	0.039	9	0.00267	0.0624	-		-	-	-	-	-	-	-	-	-	-		-	-
Endrin Aldehyde	-	-	-	-				-	-		-							-	-
Heptachlor Epoxide	0.0017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor	0.0017	3	0.0006	0.00274	-	-		-	-		-		-		-	-	-	-	-
Methoxychlor	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Octachlorostyrene		0.8							-									-	
Toxaphene		15	0.0001	-	-	-		-	-									-	-
Polychlorinated Biphenyls																			
Total Polychlorinated Biphenyls (PCBs)	0.17	10	0.0341	0.277	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232 Aroclor 1242		-	-					-	-										-
Aroclor 1248		-	-	-	-	-		-	-									-	-
Aroclor 1254	-	-	0.06	0.340	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Per- and Polyfluoroalkyl Substances ⁵			-	-															
Perfluorooctanoic acid (PFOA)	-	-	-	-	0.7	-	-	-	-		-		-		-	-	-	-	-
Perfluorooctane sulfonate (PFOS)	-	2.5	-	-	2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorobutanoic Acid (PEBA)	-	-			114				-		-						-		-
Perfluorohexane sulfonate (PFHX\xS)	-	-	-	-	2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorohexanoic Acid (PFHxA)	-	-	-	-	0.8	-	-	-	-		-		-		-	-	-	-	-
Perfluorononanoic Acid (PFNA)	-	-	-	-	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoropentanoic Acid (PFPeA)	-	-	-	-	0.8	-		-	-	-	-	-	-	-	-	-	-	-	-
Perfluorodecanoic Acid (PFDA)	-	-	-	-	-		-	-	-		-		-		-	-		-	-
Perfluorododecanoic Acid (PFDoA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	-		-	-		-		-		-	-	-	-	-
Perfluorotetradecanoic Acid (PFTEDA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
perfluorobutane sulphonate (PEBS)	-	- 650	-	-	- 61	-		-	-								-	-	-
Perfluoroheptanesulfonic acid		-	-	-	-	-		-	-									-	-
Perfluoroundecanoic Acid (PFUnA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds + BTEX			-																
Hexachlorobenzene	-	65	-	-	2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lindane (Hexachlorocyclohexane)	0.00086	2	0.00094	0.00138	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-Butyl Ether	-	8,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene		350		1	5.U 11				-										-
Toluene	-	6,500	-	-	22,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	-	8,500	-	-	10,000	-	-	-	-		-		-		-	-	-	-	-
o-Xylene	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
m,p-Xylenes Xylenes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ayrenes, rotal	-	10,000	-	-	100,000		-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: All parameter units in miligrams per kilogram (mg/kg), unless otherwise noted. OA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available: FD = Field Duplicate FDA = Field Duplicate Available: FD = Field Duplicate c Indicates parameter was below laboratory equipment detection limit. Falicis indicates he laboratory detection limit was greater than the standard ** Indicates no standard or parameter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, berz(a)anthracene, berz(a)anthracene, berz(a)anthracene, berz(a)anthracene, chorsene, diberz(a). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/86; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 22023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/86; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 22023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

4. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion pathway to protect human health. If a pathway specific guideline was not available, the generic guideline was applied (residential / parkland [RL/PL] land use). 1 In 100.000 Cancer risk level. 5. Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroalkylated Substances (PFAS). May 2019.

Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline (ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

Data Sources WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report) Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.

International problem Series Marce Marc	Location						SED21-18	SED21-19	SED21-19	SED21-20	SED21-20	SED21-21	SED21-22	SED21-23	SED21-23	SED21-24	SED21-25	SED21-26	SED21-27	SED21-28
Since N <	Sample Name	BC CSR	BC CSR	CCME	CCME Freshwater	CCME	14414-05	14414-07	14414-08	14414-03	14414-04	14414-06	14413-09	14413-07	14413-08	14413-10	14413-11	14413-12	14414-01	06185-01
Imate in the sectorMarting in the sectorMartin the sectorMarting in the sector	Sample Date	Sediment Standard	Soil Standard for	Freshwater Sediment Guideline	Sediment Guideline	Soil Guideline for	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-10-21
	Sample Depth	Sensitive Use 1	Human Health ²	ISOG 3	PEL 3	Human Health ⁴	0-0.2 m	0.5-0.6 m	0.5-0.6 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.1 m
Simular I I I I <td>a</td> <td>0011011110 0000</td> <td></td> <td>1040</td> <td></td> <td></td> <td></td> <td>55.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	a	0011011110 0000		1040				55.4						50.4						
Dim I	Field and Physical							FDA	FD	FDA	FD			FDA	FD					
Shart strange 1 <th1< th=""> 1 1 <t< td=""><td>pH</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>6.19</td><td>6.82</td><td>6.86</td><td>7.33</td><td>7.32</td><td>6.42</td><td>6.49</td><td>7.45</td><td>7.40</td><td>6.70</td><td>7.03</td><td>6.29</td><td>7.03</td><td>6.52</td></t<></th1<>	pH	-	-	-	-	-	6.19	6.82	6.86	7.33	7.32	6.42	6.49	7.45	7.40	6.70	7.03	6.29	7.03	6.52
Set Mit Microscopping 1 1 1 1 1 5 6 7 1 <th1< th=""> 1 1 1</th1<>	Sieve (>19mm) (%)	-		-	-	-	-	< 1	-	< 1	< 1	17	50	5	19	< 1	< 1	< 1	34	14
Number I I I I <td>Sieve - #4 (>4.75mm) (%) Sieve - #200 (>0.075mm) (%)</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>- 59</td> <td>< 1 47</td> <td>- 63</td> <td>< 1 72</td> <td>< 1</td> <td>16 87</td> <td>11</td> <td>19</td> <td>18</td> <td>< 1 44</td> <td>< 1 34</td> <td>< 1 38</td> <td>28</td> <td>60 4</td>	Sieve - #4 (>4.75mm) (%) Sieve - #200 (>0.075mm) (%)	-	-	-	-		- 59	< 1 47	- 63	< 1 72	< 1	16 87	11	19	18	< 1 44	< 1 34	< 1 38	28	60 4
Symposymposymposymposymposymposymposympos	Texture	_	-	_	-		Coarse	Fine	Coarse	Fine	Fine	Fine	Coarse	Fine						
Start I <td>Clay (%)</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>· -</td> <td>· -</td> <td></td> <td>· -</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>· -</td> <td>12</td>	Clay (%)	-	-	-	-			-	· -	· -		· -	-	-		-		-	· -	12
Non- stratem 1 <th1< th=""> 1 <th1< th=""> <th1<< td=""><td>Gravel (%)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>15</td></th1<<></th1<></th1<>	Gravel (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15
Sin Amorian 1 <th1< th=""> 1 <th1< td=""><td>Sand (%) Silt (%)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>48</td></th1<></th1<>	Sand (%) Silt (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	48
Nicholson · · · · </td <td>Soil Texture</td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>Sandy Loam</td>	Soil Texture			_	-			-		-	-		-	-	-	-				Sandy Loam
Sine Appendix i <	Total Carbon (%)	-	-	-	-	-	4.02	3.97	2.84	2.52	2.59	1.85	3.01	1.58	1.83	1.54	1.6	3.93	1.02	2.13
Non-standing i </td <td>Total Organic Carbon (%)</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>4.02</td> <td>3.90</td> <td>2.84</td> <td>2.52</td> <td>2.59</td> <td>1.82</td> <td>3.01</td> <td>1.58</td> <td>1.78</td> <td>1.54</td> <td>1.58</td> <td>3.89</td> <td>0.99</td> <td>2.08</td>	Total Organic Carbon (%)	-	-	-	-	-	4.02	3.90	2.84	2.52	2.59	1.82	3.01	1.58	1.78	1.54	1.58	3.89	0.99	2.08
Name - 403 - State - - - -	I otal Inorganic Carbon (%)	-	-	-	-	-	< 0.02	0.07	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	0.05	< 0.02	0.02	0.04	0.03	0.05
	Aluminum	-	40.000	_			11400			13000	14500				-		24200	18600		21400
Some	Antimony	_	500		1.00	20	0.4	-	-	0.4	0.3		-	-		-	0.5	0.5		0.2
Share 1 <td>Arsenic</td> <td>11</td> <td>40</td> <td>5.9</td> <td>17</td> <td>31</td> <td>3.5</td> <td>6</td> <td>4.8</td> <td>3.5</td> <td>4.1</td> <td>5</td> <td>6.3</td> <td>5.9</td> <td>5.4</td> <td>3.9</td> <td>5.9</td> <td>6.2</td> <td>6.2</td> <td>4</td>	Arsenic	11	40	5.9	17	31	3.5	6	4.8	3.5	4.1	5	6.3	5.9	5.4	3.9	5.9	6.2	6.2	4
strate i <td>Barium</td> <td>-</td> <td>15,000</td> <td>-</td> <td>· ·</td> <td>6,800</td> <td>60</td> <td>-</td> <td>-</td> <td>76.2</td> <td>73.8</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>112</td> <td>105</td> <td>-</td> <td>81.1</td>	Barium	-	15,000	-	· ·	6,800	60	-	-	76.2	73.8	-	-	-		-	112	105	-	81.1
band .	Bismuth		150	-	-	/5	U.2 < 0.5		-	< 0.5	< 0.5	-		-		-	0.5 < 0.5	U.4 < 0.5	-	0.4 < 0.5
Carbon 22 40 62 30 44 63 70 70 63 70 <th< td=""><td>Boron</td><td>-</td><td>15000</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Boron	-	15000	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Galan v v v v	Cadmium	2.2	40	0.6	3.5	14	4.21	3.18	1.70	5.62	4.99	1.8	2.51	1.02	1.16	1.01	5.6	11.8	1.07	0.29
Dotation from the set Child in the	Calcium	-	-	-	- 00	-	5650	-	-	6470	6650	-	-	-	- 30	-	6600	7050	-	8780
Damin MarkingConfig 1	Chromium Trivalent (Cr(III))		200				29	56	41	42	38	24 24	36	33	30	24	62	96	34	39.0
Chair Sign Image Sign Image Sign	Chromium Hexavalent (Cr(VI))	-	-	-	-	-	<8	<8	<8	<8	<8	<4	<4	<4	<4	<8	<8	<8	<4	< 0.3
nom nom <td>Cobalt</td> <td>-</td> <td>25</td> <td>-</td> <td></td> <td>50</td> <td>7.2</td> <td>-</td> <td>-</td> <td>10.2</td> <td>9.8</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>19.3</td> <td>12.6</td> <td>-</td> <td>12.5</td>	Cobalt	-	25	-		50	7.2	-	-	10.2	9.8	-	-	-	-	-	19.3	12.6	-	12.5
	Copper	120	7,500	35.7	197	1,100	25.6	-	-	24.7	22.5	-	-	-	-	-	38.7	34.3	-	32.3
Lihim - 1 <th1< th=""> 1 1 1</th1<>	Lead	57	120	35	91.3	140	12.8	-	-	15.5	21,000	-	-	-	-	-	17.5	27,000	-	5.1
MagazaniII<	Lithium	-	65	-	-	-	7.4	-	-	9.4	9.4	-	-	-		-	18.9	13.3		13.8
Mappen Col Map Col Col<	Magnesium	-		-	-	-	3,920	-	-	4,770	4,890	-	-	-	-	-	8,650	5,800	-	8,160
Mache Image Image <th< td=""><td>Manganese</td><td>-</td><td>10,000</td><td>- 0.17</td><td>- 0.486</td><td>-</td><td>483</td><td>-</td><td>-</td><td>1,030</td><td>986</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>334</td><td>792</td><td>-</td><td>544</td></th<>	Manganese	-	10,000	- 0.17	- 0.486	-	483	-	-	1,030	986	-	-	-	-	-	334	792	-	544
NichNich773723723-7337	Molvbdenum	-	400	-	-	10	0.9	-	-	0.5	0.5		-	-	-	-	0.9	0.05		0.5
Phoghesis <td>Nickel</td> <td>-</td> <td>900</td> <td>-</td> <td>-</td> <td>200</td> <td>14.4</td> <td>-</td> <td>-</td> <td>18.3</td> <td>17.4</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>37.9</td> <td>25.2</td> <td></td> <td>28.0</td>	Nickel	-	900	-	-	200	14.4	-	-	18.3	17.4	-	-	-		-	37.9	25.2		28.0
Observation 1 <th< td=""><td>Phosphorus</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>589</td><td>-</td><td>-</td><td>635</td><td>652</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>459</td><td>1330</td><td>-</td><td>603</td></th<>	Phosphorus	-	-	-	-	-	589	-	-	635	652	-	-	-	-	-	459	1330	-	603
shee - - - -	Potassium	-	-	-	-	- 80	586	-	-	487	528	-	-	-	-	-	1210	721	-	608
Schem · · · ·	Silver	_	400	_	-	20	< 0.5	-		< 0.5	< 0.5		-	-	-	-	< 0.5	< 0.5		< 0.5
Signal match I Signal match I Signal match Signa	Sodium	-	1,000,000	-	-	-	272	-	-	400	408	-	-	-	-	-	489	306	-	360
main ·	Strontium	-	20,000	-	-	-	32	-	-	38	39	-	-	-	-	-	41	42	-	40
Tanum · <td>T nallium Tin</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>1</td> <td>< 0.1</td> <td></td> <td></td> <td>< 0.1</td> <td>< 0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.1</td> <td>< 0.1</td> <td></td> <td>< 0.1</td>	T nallium Tin	-	-	-		1	< 0.1			< 0.1	< 0.1						< 0.1	< 0.1		< 0.1
Tungan 1 . <td>Titanium</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>601</td> <td></td> <td>-</td> <td>769</td> <td>854</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>1,210</td> <td>514</td> <td></td> <td>1,120</td>	Titanium	-	-	-	-	-	601		-	769	854		-	-		-	1,210	514		1,120
Unrunn 1 250 1<	Tungsten	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Yaho 200 20 200 <td>Uranium</td> <td>-</td> <td>250</td> <td>-</td> <td>-</td> <td>23</td> <td>0.7</td> <td>-</td> <td>-</td> <td>0.6</td> <td>0.5</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0.5</td> <td>0.7</td> <td>-</td> <td>0.6</td>	Uranium	-	250	-	-	23	0.7	-	-	0.6	0.5	-	-	-	-	-	0.5	0.7	-	0.6
Trendm Image: Stream Hyperson Hyper	Vanadium Zinc	- 200	400	- 123	- 315	130	38	- 80	- 84	51	48	- 124	- 221	- 186	- 163	- 135	126	174	- 124	75
Percelositivado D <thd< th=""> D <thd< th=""> <</thd<></thd<>	Zirconium	-	-	-	-	-	1.2	-	-	0.9	0.8	-	-	-	-	-	4.8	0.6	-	2.6
Acompathinen 0.065 2.00 0.00971 0.089 - - - -	Petroleum Hydrocarbons	1																		
Accarage/injence 0.08 - 0.08677 0.18 - <th< td=""><td>Acenaphthene</td><td>0.055</td><td>2,000</td><td>0.00671</td><td>0.0889</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Acenaphthene	0.055	2,000	0.00671	0.0889	-	-	-	-	-		-	-	-		-	-	-	-	-
Antmoone 0.15 25.000 0.0466 0.245 -<	Acenaphthylene	0.08	· · · ·	0.00587	0.128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Banzalo (Liberation Construction Constr	Anthracene Benz(a)anthracene	0.15	25,000	0.0469	0.245			-	-	-	-	-	-	-	-	-	-		-	-
Benzol/Hournahane .	Benzo(g,h,i)perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzola/Nuranhene -	Benzo[]]fluoranthene	-	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ormula (mysme U48 U U.U319 U.Ac/L I <thi< th=""> <thi< th=""> <thi< th=""> I</thi<></thi<></thi<>	Benzo(k)fluoranthene	-	95	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-
Barray(L) fundamente 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	Benzo(a)pyrene Benzo(b)fluoranthene	0.48	10	0.0319	0.782	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene 0.53 400 0.071 0.882 - <td>Benzo(b,j) fluoranthene</td> <td>-</td> <td>95</td> <td>-</td>	Benzo(b,j) fluoranthene	-	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diberga(h)amhracene 0.084 10 0.082 0.135 -	Chrysene	0.53	400	0.0571	0.862	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Indumining 1,3 3,300 0,11 2,353 1 <th1< th=""> 1 1 1<td>Dibenz(a,h)anthracene</td><td>0.084</td><td>10</td><td>0.00622</td><td>0.135</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th1<>	Dibenz(a,h)anthracene	0.084	10	0.00622	0.135		-	-	-	-	-	-	-	-	-	-	-	-	-	-
indend (1,2,3,d)pynené 95 1 <td>Fluorene</td> <td>0.089</td> <td>1 000</td> <td>0.0212</td> <td>0 144</td> <td></td> <td>-</td>	Fluorene	0.089	1 000	0.0212	0 144		-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.4.leftyngathalane - 500 -	Indeno(1,2,3-c,d)pyrene	-	95	-		-	-		-			-	-	-		-	-		-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1-Methylnaphthalene		500	-	· · · ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Markanna 0.24 Mode 0.39 0.49 0.39 0.49 0.39 1 <	2-metnyinaphthalene Naphthalene	0.12	100	0.0202	0.201	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene 0.54 2.50 0.053 0.875 -	Phenanthrene	0.24	3,500	0.0340	0.591	-	-	-				-				-		-		-
Quinoline - 4.5 - <th< td=""><td>Pyrene</td><td>0.54</td><td>2,500</td><td>0.053</td><td>0.875</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Pyrene	0.54	2,500	0.053	0.875		-	-	-	-	-	-	-	-	-	-	-	-	-	-
PArts (otal 10 - <t< td=""><td>Quinoline</td><td>-</td><td>4.5</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Quinoline	-	4.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Index of Additive Cancer Risk (IACR; unitities) - </td <td>PAHS, total Benzo(a)pyrene Total Potency Equivalence (TPE)</td> <td>10</td> <td>-</td> <td>-</td> <td>1</td> <td>- 06</td> <td>-</td> <td>-</td> <td>2</td> <td>2</td> <td></td> <td>-</td> <td>2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	PAHS, total Benzo(a)pyrene Total Potency Equivalence (TPE)	10	-	-	1	- 06	-	-	2	2		-	2	-	-	-	-	-	-	-
EPH (C10-C19) - 1,000 -	Index of Additive Cancer Risk (IACR; unitless)	-	-		1	-	-	-	-	-		-	-	-		-	-	-	-	-
EPH (C19-C32) - 1,000 -	EPH (C10-C19)	-	1,000	-		-	-		-	-		-	-			-	-	-		-
Lguire Availability Francesconder Francesconde	EPH (C19-C32)	-	1,000	-	-	-	-	-	-	-		-	-			-		-	-	-
	Heavy Extractable Petroleum Hydrocarbons (HEPH)		1,000]		-		-	-	-	-	-	-	-	-	-	-		-	

Location						SED21-18	SED21-19	SED21-19	SED21-20	SED21-20	SED21-21	SED21-22	SED21-23	SED21-23	SED21-24	SED21-25	SED21-26	SED21-27	SED21-28
Sample Name	BC CSR	BCCSP	CCME	CCME Eroshwator	COME	14414-05	14414-07	14414-08	14414-03	14414-04	14414-06	14413-09	14413-07	14413-08	14413-10	14413-11	14413-12	14414-01	06185-01
Sample Date	Sediment Standard	Soil Standard for	Freshwater	Sediment Guideline	Soil Guideline for	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-06-15	2021-10-21
Sample Depth	for Freshwater	Human Health ²	Sediment Guideline	PEL 3	Human Health ⁴	0-0.2 m	0.5-0.6 m	0.5-0.6 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.2 m	0-0.1 m
	Sensitive Use		ISQG -																
QA/QC							FDA	FD	FDA	FD			FDA	FD					
Pesticides																			
4,4-DDD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4,4-DDE	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
o.p'-DDD	-		_	_	-			-	-	-			-	-		-			-
o,p'-DDE	-		-	-	-			-	-	-			-			-			-
o,p'-DDT		-		-	-	-		-	-	-		-	-	-	-	-	-	-	-
DDD, Total	0.0053	-	0.00354	0.00851		-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT Total	0.0042		0.00142	0.00073	-	-	-	-	-	-	-	-	-	-	-	-	-		-
DDT + DDD + DDE, Total	-	40	0.00119	0.00477	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
alpha-BHC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
delta-BHC			-	-				-											-
alpha-Chlordane	0.0055		-	-	-			-	-				-			-			-
Chlordane	-	15	0.0045	0.00887		-	-	-	-	-	-	-	-	-	-	-	-		-
Chlordane, technical mixture	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dielarin	0.0041	0.85	0.00285	0.00667	-		-	-	-	-	-	-	-	-	-	-	-		-
alpha-Endosulfan		-	[-	-	-	-	-	-	-	-	-	-	-	-		-
beta-Endosulfan	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Endosulfan Sulfate	-			-		-	-	-	-	-	-	-	-	-	-	-	-		-
Endrin	0.039	9	0.00267	0.0624	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin Aldehyde	-	-	-	-	-	-		-	-	-					-		-		-
Heptachlor Epoxide	0.0017	-	-	-	-			-	-										-
Heptachlor	0.0017	3	0.0006	0.00274	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methoxychlor	-	150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mirex Octachlorostyrene	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toxaphene	-	15	0.0001	_	-			-	-	-		-	-	-		-	-	-	-
Polychlorinated Binhenvis																			
Total Polychlorinated Biphenyls (PCBs)	0.17	10	0.0341	0.277	-	-		-	-	-			-			-	-	-	-
Aroclor 1016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1221	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1232 Aroclor 1242			-	-				-											-
Aroclor 1248	-	-	-	-	-			-	-										-
Aroclor 1254	-	-	0.06	0.340	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Per- and Polyfluoroalkyl Substances ⁵																			
Perfluorooctanoic acid (PFOA)	-	-	-	-	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pertluorooctane sulfonate (PFOS)	-	2.5	-	-	2.0	-	-	-	-	-	-	-	-	-	-	-	-		-
Perfluorobeitanoic Acid (PEBA) Perfluorobeitanoic Acid (PEHnA)	-		-		0.8			-	-										
Perfluorohexane sulfonate (PFHX\xS)	-	-	-	-	2.3	-	-	-	-	-	-	-	-	-	-	-	-		-
Perfluorohexanoic Acid (PFHxA)	-	-	-	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-		-
Pertluorononanoic Acid (PFNA)	-	-	-	-	0.08	-	-	-	-	-	-	-	-	-	-	-	-		-
Perfluoropenanoic Acid (PPPeA) Perfluorodecane Sulfonate	-	-		1	υ.8 -	-	-	-	-	-	-	-	-	-	-	-	-		-
Perfluorodecanoic Acid (PFDA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorododecanoic Acid (PFDoA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorotetradecanoic Acid (PFTEDA) Perfluorotridecanoic Acid (PETRDA)			-	-				-											-
perfluorobutane sulphonate (PFBS)	-	650	-	-	61			-	-				-			-			
Perfluoroheptanesulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoroundecanoic Acid (PFUnA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds + BTEX																			
Hexachlorobenzene	-	65	-	-	2.0			-	-	-		-				-	-		-
Lindarie (nexachiorocyclonexane) Methyl tert-Butyl Ether	0.00086	2 8 000	0.00094	0.00138	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Styrene	-	15,000			5.0	-	-	-	-	-	-	-	-	-	-	-	-		-
Benzene	-	350	-	-	11	-	-	-	-	-	-	-	-	-	-	-	-		-
Toluene	-	6,500	-	-	22,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
euryidenzene o-Xviene	-	8,500			10,000			-	-	-			-	-		-	-		-
m,p-Xylenes	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Xylenes, Total	-	15,000		-	150,000		-	-	-	-	-	-	-	-	-	-	-		-

Notes: All parameter units in miligrams per kilogram (mg/kg), unless otherwise noted. OA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available: FD = Field Duplicate FDA = Field Duplicate Available: FD = Field Duplicate c Indicates parameter was below laboratory equipment detection limit. Falicis indicates he laboratory detection limit was greater than the standard ** Indicates no standard or parameter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, berz(a)anthracene, berz(a)anthracene, berz(a)anthracene, berz(a)anthracene, chorsene, diberz(a). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/86; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 22023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/86; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 22023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

A. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines: soil ingestion pathway to protect human health.
 If a pathway specific guideline was not available, the generic guideline was applied (residentail / parkland [RL/PL] land use).
 I in 100,000 cancer risk level.
 S. Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroalkylated Substances (PFAS). May 2019.

Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline (ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

Data Sources WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report) Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.

Location						SED21-29	SED21-30	SED21-31	SED21-31	SED21-32	SED21-33	SED21-34	SED21-34	SED21-35	SED21-36	SED21-37	SED21-38	SED21-39	SED21-40
Sample Name	BC CSR	BC CSR	CCME	CCME Freshwater	CCME	06185-02	06185-03	06185-04	06185-05	06185-06	06185-07	06185-08	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04
Sample Date	for Freshwater	Soil Standard for	Sediment Guideline	Sediment Guideline	Soil Guideline for	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21
Sample Depth	Sensitive Use 1	Human Health ²	ISQG ³	PEL 3	Human Health ⁴	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m						
0.1/00								504	50			ED A	50						
Field and Physical								FDA	FD			FDA	FD						
pH	-	-	-	-	-	7.50	7.46	7.54	7.61	7.00	6.03	5.98	5.98	6.23	7.38	7.19	6.39	7.16	5.81
Sieve (>19mm) (%)	-	-	-	-	-	6	26	33	-	9	25	< 1	< 1	< 1	< 1	7	6	< 1	< 1
Sieve - #4 (>4.75mm) (%)	-	-	-	-	-	23	30	39	-	72	41	20	11	< 1	7	44	48	< 1	1
Texture	-	-	-	-	-	Fine	Fine	Fine	-	Fine	Fine	Fine	Fine	Fine	Coarse	Fine	Fine	Coarse	Fine
Clay (%)	-	-	-	-	-	6	10	2	-	5	4	25	32	11	13	6	17	4	16
Gravel (%)	-		-	-	-	23	13	8	-	2	1	9	12	11	10	5	14	2	3
Sand (%)	-	-	-	-	-	62	63	86	-	84	81	46	34	61	64	85	50	87	42
Soil Texture	-	-	-	-	-	Joamy Sand	Sandy Loam	4 Sand	-	Joamy Sand	Loamy Sand	Sandy Clay Loam	Clav Loam	Sandy Loam	Sandy Loam	Sand	Sandy Clay Loam	Sand	Loam
Total Carbon (%)	-		-	-	-	0.95	1.62	0.46	0.31	1.54	1.92	0.57	0.54	2.39	0.51	0.55	1.06	0.75	9.17
Total Organic Carbon (%)	-	-	-	-	-	0.95	1.62	0.46	0.31	1.54	1.92	0.57	0.54	2.39	0.51	0.55	0.98	0.75	9.07
Total Inorganic Carbon (%)	-	-	-	-	-	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.08	< 0.02	0.10
Metals		40.000		1		11700	17100	10000		10000		40000		40000	11 700	40.000	10.000	7.000	00.000
Aluminum		40,000	1	-	- 20	14/00	1/400	13000	11100	10800	8990	18200	22000	13000	11,700	12,000	12,600	7,830	22,600
Arsenic	11	40	5.9	17	31	3	2	5	13	3	3	6	6	2	4	< 1	5	2	7
Barium	-	15,000	-	-	6,800	49.9	73.4	54.8	36.5	42.6	47.3	71.8	79.6	59.6	48.4	56.6	49.3	42.9	113
Beryllium	-	150	-	-	75	0.3	0.3	0.3	0.2	0.2	0.2	0.4	0.3	0.2	0.3	0.3	0.3	0.2	0.5
Bismum	-	- 15000	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< U.5	< 0.5	< 0.5	< 0.5	< 0.5	< U.5	< 0.5	< U.5	< 0.5	< 0.5
Cadmium	2.2	40	0.6	3.5	14	1.04	1.19	1.11	0.93	0.84	3.19	1.64	1.47	1.30	1.53	0.68	1.13	1.00	13.8
Calcium	-	-	-	-	-	7620	6230	6960	6060	5390	4060	6360	6490	4580	4510	5220	5910	3820	8060
Chromium Chromium Trivolant (Cr(III))	56	250	37.3	90	220	33	26	21	19	24	24	40	45	25	27	15	28	14	74
Chromium Trivalent (Cr(III)) Chromium Hexavalent (Cr(VI))	-	-		-	-	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	-	< 0.3	45.0 < 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	-
Cobalt	-	25	-	-	50	12.8	12.5	11.3	8.9	9.1	8.5	14.5	16.8	8.8	9.7	7.5	10.5	6.5	16.6
Copper	120	7,500	35.7	197	1,100	31.4	20.5	19.5	22.2	16.6	18.6	30.1	33.9	17.7	19.1	13.8	21.9	10.5	54.9
Iron	-	35,000	-	-	-	29,400	31,000	24,500	21,800	20,300	13,100	29,600	34,600	17,100	20,400	21,600	22,400	15,900	31,100
Lithium		65	-	- 91.5	-	8.5	11.5	6.3	5.6	6.3	6.1	13.2	14.2	8.6	8.8	8.2	8.4	4.8	17.1
Magnesium	-	-	-	-	-	7,420	7,820	6,000	5,050	4,700	3,270	7,650	9,260	4,120	4,790	4,900	5,740	2,620	7,290
Manganese		10,000				413	573	935	563	380	276	481	565	236	440	566	472	531	806
Mercury	0.3	25	0.17	0.486	6.6	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.01	0.01	0.02	0.10
Nickel		900		-	200	25.0	22.6	17.6	14.9	14.2	13.7	29.3	36.0	17.2	18.7	12.4	19.2	9.3	33.1
Phosphorus	-	-	-	-	-	658	631	763	527	529	369	676	670	442	527	609	489	594	1330
Potassium	-	-	-	-	-	458	658	374	296	430	420	952	1210	526	583	506	612	363	1110
Selenium Silver		400	-	-	80	0.3	0.3	0.3	0.2	< 0.1	< 0.1	0.3	0.3	0.1	0.3	0.4	0.1	0.3	0.7
Sodium	-	1,000,000	-	-	-	292	318	219	224	239	199	433	496	226	297	218	250	145	947
Strontium	-	20,000	-	-	-	26	30	34	29	26	22	29	31	26	25	25	22	20	57
Thallium	-	-	-	-	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Titanium	-	50,000	-	-	50	1.370	1.380	1.0	1.3	1.070	734	1 320	1 450	807	897	974	1 070	666	1.3
Tungsten	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium	-	250	-	-	23	0.6	0.4	0.3	0.2	0.4	0.4	0.3	0.4	0.5	0.3	0.3	0.3	0.2	1.1
Vanadium Zino	-	400	-	- 245	130	66	57	55	47	46	36	73	84	43	49	40	52	30	71
Zirconium	200	-	123		-	6.0	4.2	3.7	3.9	3.1	1.3	6.4	6.4	1.9	3.5	4.2	3.6	1.1	3.4
Petroleum Hydrocarbons								-											-
Acenaphthene	0.055	2 000	0.00671	0.0889	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthylene	0.08	-	0.00587	0.128	-		-	-	-		-	-	-		-	-	-		-
Anthracene	0.15	25,000	0.0469	0.245	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a h i)pervlene	0.24	95	0.0317	0.385	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo[]]fluoranthene	-	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(k)fluoranthene	-	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene	0.48	10	0.0319	0.782	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b.i) fluoranthene	-	95	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	0.53	400	0.0571	0.862	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenz(a,h)anthracene	0.084	10	0.00622	0.135	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	1.5	3,500	0.111	2.355	-		-	-			-	-	-			-	-	-	-
Indeno(1,2,3-c,d)pyrene	-	95	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
1-Methylnaphthalene	-	500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2-methylnaphthalene	0.12	100	0.0202	0.201	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	0.24	1,500	0.0346	0.391	-	-	-	-	-	-	-	-	-	-	-	-	-		
Pyrene	0.54	2,500	0.053	0.875	-	-	-	-	-	-	-	-		-	-	-	-		-
Quinoline	-	4.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
PAHs, total Benzo(a)pyrene Total Potency Equivalence (TBE)	10	-	-	-	-	-	-	-	-			-		-	-	-	-		-
Index of Additive Cancer Risk (IACR: unitless)	-	-	-	-	U.6	-					-	-	-	-			-		-
EPH (C10-C19)	-	1,000	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EPH (C19-C32)	-	1,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
Light Extractable Petroleum Hydrocarbons (LEPH)		1,000	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Heavy Exilaciable Peiroeum Evolocarbons (HEPE)		1.000	-		-														

Location						SED21-29	SED21-30	SED21-31	SED21-31	SED21-32	SED21-33	SED21-34	SED21-34	SED21-35	SED21-36	SED21-37	SED21-38	SED21-39	SED21-40
Sample Name	BC CSR	BC CSR	CCME	CCME Freshwater	CCME	06185-02	06185-03	06185-04	06185-05	06185-06	06185-07	06185-08	06185-09	06185-10	06185-11	06187-01	06187-02	06187-03	06187-04
Sample Date	Sediment Standard	Soil Standard for	Freshwater Sediment Guideline	Sediment Guideline	Soil Guideline for	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21	2021-10-21
Sample Depth	Sensitive Use 1	Human Health ²	ISOG 3	PEL ³	Human Health ⁴	0-0.1 m													
24/00			1040					504	50			554	50						
ua/uc Posticidos								FDA	FD			FDA	FD						
14-DDD		_				_	-	_		-		_	-	_		-		-	-
4.4-DDE	-			-	-	-	-		-	-			-				-	-	-
4,4-DDT	-	-	-	-	-	-	-			-	-	-		-			-	-	-
o,p'-DDD	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-
o,p'-DDE	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
5,p-001 DD Total	0.0053		0.00354	0.00851			-			-									
DDE. Total	0.0042		0.00142	0.00675	-	-	-	-	-	-	-		-	-			-	-	-
DDT, Total	0.003	-	0.00119	0.00477	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DDT + DDD + DDE, Total	-	40	0.00119	0.00477	-	-	-		-	-	-		-	-			-		
Aldrin	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
alpha-BHC	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
delta-BHC	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
alpha-Chlordane	0.0055	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlordane	-	15	0.0045	0.00887	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Chlordane, technical mixture	-			-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Dieldrin	0.0041	0.85	0.00285	0.00667	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
inuosunan aloba-Endosulfan		-	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
peta-Endosulfan	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan Sulfate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin	0.039	9	0.00267	0.0624	-	-	-	-	-	-	-	-	-	-			-	-	-
Endrin Ketone	-		-	-	-	-	-		-	-	-		-	-			-		
Endrin Aldehyde	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Hentachlor	0.0017	3	0.0006	- 0.00274			-			-									
Methoxychlor	-	150	-	-	-	-	-	-	-	-	-		-	-			-	-	-
Mirex	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Octachlorostyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toxaphene	-	15	0.0001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls			1																
Total Polychlorinated Biphenyls (PCBs)	0.17	10	0.0341	0.277	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1016 Aroclor 1221							-			-									
Aroclor 1232	-	-	-	-	-	-	-	-	-	-	-		-	-			-	-	-
Aroclor 1242	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1248	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1254	-	-	0.06	0.340	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arocior 1260	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Per- and Polyfluoroalkyl Substances ⁵																			
Perfluorooctanoic acid (PFOA)	-		-	-	0.7	-	-	-	-	-	-	-	-	-			-	-	-
Pertiuorooctane sultonate (PFOS)	-	2.5	-	-	2.0	-	-	-	-	-	-	-	-	-	-		-	-	-
Perfluoroheptanoic Acid (PEBA)		-	1		0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorohexane sulfonate (PFHX\xS)	-	-	.		2.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorohexanoic Acid (PFHxA)	-	-		-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorononanoic Acid (PFNA)	-	-		-	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluoropentanoic Acid (PFPeA)	-	-	-	-	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Periluorodecane Sulionale Perfluorodecanoic Acid (PEDA)							-			-									
Perfluorododecanoic Acid (PEDA)	-	-	-	-	-	-	-	-	-	-	-		-	-			-	-	-
Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorotetradecanoic Acid (PFTEDA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Perfluorotridecanoic Acid (PFTRDA)	-		-	-		-	-		-	-	-		-	-			-		
perfluorobutane sulphonate (PFBS)	-	650	-	-	61	-	-	-	-	-	-	-	-	-	-		-	-	-
Periluoroneplanesulionic acid Perfluoroundecanoic Acid (PELInA)							-			-									
				-															
Volatile Organic Compounds + BTEX		65	-		2.0	_	-	_		_				_		_	-	-	
indane (Hexachlorocyclohexane)	0.00086	2	0 00094	0.00138	2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl tert-Butyl Ether	-	8,000	-	-	-	-	-			-									
Styrene	-	15,000		-	5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzene	-	350	-	-	11	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	-	6,500	-	-	22,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_uryibenzene	-	8,500			10,000	-	-	-	-	-		-	-	-	-	-	-	-	-
n.p-Xvlenes	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Kylenes, Total	-	15,000	-	-	150,000	-	-	-	-	-	-		-	-	-		-	-	-

Notes: Al parameter units in miligrams per kilogram (mg/kg), unless otherwise noted. QA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available; FD = Field Duplicate < Indicates parameter was below laboratory equipment detection limit. Falics indicates the laboratory detection limit was greater than the standard ** indicates no standard or paramter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benz(a)anthracene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, henanthrene, and pyrene). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96, includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion pathway to protect human health. If a pathway specific guideline was not available, the generic guideline was applied (residential / parkland [RL/PL] land use). 1 In 100,000 cancer risk level. 5. Health Canada. 2019. Updates to Health Canada Soil Screening Values for Perfluoroallylated Substances (PFAS). May 2019.

•	
Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline

Black Builder	(ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

 Data Sources

 WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report)

 Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA

 SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.

m/sites/CA-CA00078675135/Shared Documents/06. Deliverables/3.0_ISSUED/CA0007867.5135-004-R-Rev0/APP/App B - Screened Data Tables/Table B1 to B5 Analytical Results_DR

						05024.44	05004.40		05004 00 04	05004 00 00	05004 00 00
Location	D0.00D		0.0115			SED21-41	SED21-42	SED21-BG-01	SED21-BG-01	SED21-BG-02	SED21-BG-03
Sample Name	BC CSR Sodimont Standard	BC CSR	Eroshwator	CCME Freshwater	CCME	06187-05	06187-06	06189-01	06189-02	06189-03	06189-04
Sample Date	for Freshwater	Soil Standard for	Sediment Guideline	Sediment Guideline	Soil Guideline for	2021-10-21	2021-10-21	2021-10-22	2021-10-22	2021-10-22	2021-10-22
Sample Depth	Sensitive Use 1	Human Health ²	ISQG ³	PEL ³	Human Health *	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m
01/02								504	50		
GANGC Field and Physical								FDA	FD		
pH	-	-	-	-	-	6.26	5.92	7.87	7.67	6.85	7.42
Sieve (>19mm) (%)	-	-	-	-	-	< 1	< 1	< 1	< 1	< 1	31
Sieve - #4 (>4.75mm) (%)	-	-	-	-	-	< 1	< 1	11	29	8	25
Sieve - #200 (>0.075mm) (%)	-	-	-	-	-	84	16	52	47	23	9
Texture	-	-	-	-	-	Coarse	Fine	Coarse	Fine	Fine	Fine
Gravel (%)	-	-	-	-	-	5	< 1	9	9	29	7
Sand (%)	-	-	-	-	-	84	45	72	77	33	34
Silt (%)	-	-	-	-	-	7	42	11	7	32	28
Soil Texture	-	-	-	-	-	Sand	Loam	Sandy Loam	Loamy Sand	Clay Loam	Clay Loam
Total Carbon (%)	-	-	-	-	-	2.25	4.90	0.89	0.89	1.09	0.85
Total Inorganic Carbon (%)	-		-		-	2.25	4.90	0.69	0.09	1.09	0.03
		-	-	-	-	< 0.02	4 0.0Z	4 0.0Z	4 0.0Z	4 0.0Z	0.02
Metals		40.000	1	1	1	0.070	40.000	45.000	40.000	00 700	05 500
Antimony		40,000			- 20	9,270	0.5	15,200	0.4	26,700	25,500
Arsenic	11	40	5.9	17	31	4	7	2	7	4	6
Barium	-	15,000	-	-	6,800	55.1	109	57.4	59.2	106	133
Beryllium	-	150	-	-	75	0.2	0.4	0.3	0.3	0.4	0.4
Bismuth	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Boron Cadmium	22	15000	- 0.6	3.5	- 14	6.18	12.6	- 0.17	- 0.17	- 0.23	- 0.21
Calcium	-	-	-	-	-	7340	6920	6700	6470	6870	7920
Chromium	56	250	37.3	90	220	30	86	21	26	40	45
Chromium Trivalent (Cr(III))	-	-	-	-	-	-	-	21.0	26.0	40.0	45.0
Chromium Hexavalent (Cr(VI))	-	-	-	-	-	-	-	< 0.3	< 0.3	< 0.3	< 0.3
Copper	-	25	- 25.7	-	50	9.1	13.0	8.0	9.9	13.1	15.8
Iron	120	35 000		-	-	15 900	25 700	22.200	22 500	33,300	39 400
Lead	57	120	35	91.3	140	11.3	44.0	14.4	8.8	8.1	6.7
Lithium	-	65	-	-	-	5.8	14.5	9.4	9.6	17.0	22.2
Magnesium		-	-	-	-	3,320	6,130	5,430	5,640	8,090	9,750
Manganese	-	10,000	-	-	-	594	629	572	637	528	1,500
Mercury	0.3	25	0.17	0.486	6.6 10	0.04	0.07	0.03	0.03	0.04	0.03
Nickel	-	900	-	-	200	15.1	27.6	18.1	21.1	31.3	44.7
Phosphorus	-	-	-	-		529	1320	619	596	491	777
Potassium	-	-	-	-	-	443	921	700	740	1190	1770
Selenium		400	-	-	80	0.5	0.5	0.1	0.3	0.3	0.4
Silver	-	400	-	-	20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Stontium		20.000				233	474	309	307	404	649
Thallium	-	-	-	-	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tin	-	50,000	-	-	50	0.6	1.0	0.5	0.7	0.6	0.5
Titanium	-	-	-	-	-	684	952	1,050	1,170	1,470	1,220
Tungsten	-	-	-	-	-	-	-	-	-	-	-
Uranium	-	250	-	-	23	0.9	0.9	0.3	0.3	0.6	0.8
Zinc	200	25.000	123	315	10.000	277	322	110	124	66	107
Zirconium	-		-	-	-	1.3	2.2	3.1	3.3	4.8	4.1
Petroleum Hydrocarbons	1	1	1	1	1	1					
Acenaphthene	0.055	2 000	0.00671	0.0889		-	-	-	-		
Acenaphthylene	0.08	-	0.00587	0.128	-	-	-	-	-	-	-
Anthracene	0.15	25,000	0.0469	0.245	-	-	-	-	-	-	-
Benz(a)anthracene	0.24	95	0.0317	0.385	-	-	-	-	-	-	-
Benzo(g,n,i)peryiene Benzoliifuoranthene	-	-	-	-	-	-	-				
Benzo(k)fluoranthene	-	95		-	-	-	-	-	-	-	
Benzo(a)pyrene	0.48	10	0.0319	0.782	-	-	-	-	-	-	
Benzo(b)fluoranthene	-	95	-	-	-	-	-	-	-	-	-
Benzo(b,j) fluoranthene		95	-	-	-	-	-	-	-	-	-
Chrysene	0.53	400	0.0571	0.862	-	-	-	-	-	-	-
Eluoranthene	0.064	3 500	0.00622	0.135	-	-					
Fluorene	0.089	1.000	0.0212	0.144	-	-	-	-	-		
Indeno(1,2,3-c,d)pyrene	-	95	-	· -	-	-	-	-	-	-	-
1-Methylnaphthalene	-	500	-	-	-	-	-	-	-	-	-
2-methylnaphthalene	0.12	100	0.0202	0.201	-	-	-	-	-	-	-
Ivaprunalene Dhenonthrene	0.24	1,500	0.0346	0.391	-	-	-	-	-	-	-
Pyrene	0.54	2,500	0.0419	0.875		1	-	-	-	-	-
Quinoline	-	4.5	-	-	-	-	-	-	-	-	-
PAHs, total	10	-	-	-	-	-	-	-	-	-	-
Benzo(a)pyrene Total Potency Equivalence (TPE)	-	-	-	-	0.6	-	-	-	-	-	-
Index of Additive Cancer Risk (IACR; unitless)	-	-	-	-	-	-	-	-	-	-	-
EPH (C19-C32)	-	1,000		-		-	-	-	-	-	-
Light Extractable Petroleum Hydrocarbons (LEPH)	-	1,000	-	-		-	-	-	-	-	-
Heavy Extractable Petroleum Hydrocarbons (HEPH)	-	1,000	-	-	-	-	-	-	-	-	-

Bunch Straig Long Bunch Straig Long Set State of Long Conter you have been been been been been been been be	Location						SED21-41	SED21-42	SED21-BG-01	SED21-BG-01	SED21-BG-02	SED21-BG-03
Partner basis Statistication (series 0 and basis 0	Comple None	BC CSR		CCME			00407.05	00407.00	00400.04	000400.00	000400.00	000400.04
Strange Dorgh, Seath Using and Strange And	Sample Name	Sediment Standard	BC CSR Soil Standard for	Freshwater	Sediment Guideline	Soil Guideline for	2021-10-21	2021-10-21	2021-10-22	2021-10-22	2021-10-22	2021-10-22
Decision Book Part of the second of the sec	Sample Date	for Freshwater	Human Health ²	Sediment Guideline	PEL 3	Human Health 4	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m	0-0.1 m
DADG PI PI PIA PI AtaBola -		Sensitive Use		ISQG °								
Particles Image: Constraint of the second seco	QA/QC								FDA	FD		
Al-Don I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	Pesticides											
Loop 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	4,4-DDD	-	-	-	-	-	-	-	-	-	-	-
Condit I <td>4,4-DDE 4,4-DDT</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>	4,4-DDE 4,4-DDT				-	-	-	-	-			-
bi-COE · <td>o,p'-DDD</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>	o,p'-DDD	-	-		-	-	-	-	-			-
DACOT DASS I DASS I <thi< th=""> I <thi< th=""> I I I</thi<></thi<>	o,p'-DDE	-	-	-	-	-	-	-	-	-	-	-
Date is and the set of the set o	o,p'-DDT	-	-	-	-	-	-	-	-	-	-	-
Dist Train 0.003 - 0.00119 0.0077 - <td>DDD, Total</td> <td>0.0053</td> <td>-</td> <td>0.00354</td> <td>0.00851</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>	DDD, Total	0.0053	-	0.00354	0.00851	-	-	-	-			-
DC1 - DOD - DOD. Total .	DDT, Total	0.0042	-	0.00112	0.00477	-	-	-	-			-
Adm - - -	DDT + DDD + DDE, Total	-	40	0.00119	0.00477	-	-	-	-	-	-	-
minimation i	Aldrin	-	0.8	-	-	-	-	-	-	-	-	-
Base Brid Hab-Christone Babel Christone Babel Chrite Babel Christone Babel Christone Babel Christone Ba	alpha-BHC		-		-		-					-
abbs/channe 0.055 .	delta-BHC	-	-	-	-	-	-	-	-	-		-
Chrome - 15 0.045 0.0087 - - <	alpha-Chlordane	0.0055	-	-	-	-	-	-	-	-	-	-
Distance strategy 0.0011 0.65 0.00267 - <t< td=""><td>Chlordane</td><td>-</td><td>15</td><td>0.0045</td><td>0.00887</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Chlordane	-	15	0.0045	0.00887	-	-	-	-	-	-	-
Encode in the second of the second	Dieldrin	0.0041	- 0.85	0.00285	- 0.00667	-	-	-	-	-	-	-
Inhole Schulder -	Endosulfan	-	500	-	-	-	-	-	-	-	-	-
bell-findulation i	alpha-Endosulfan	-	-	-	-	-	-	-	-	-	-	-
Disolation Statute 0.039 0 0.00247 0.0024 - <	beta-Endosulfan	-	-	-	-	-	-	-	-	-	-	-
Ends Image: Control Image: Control <td>Endosulian Sullate</td> <td>- 0.039</td> <td>9</td> <td>0.00267</td> <td>- 0.0624</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	Endosulian Sullate	- 0.039	9	0.00267	- 0.0624		-					-
Endm Aldarybs . <	Endrin Ketone	-	-	-	-	-	-	-	-	-	-	-
Hepschild 0.0017 -	Endrin Aldehyde	-	-	-	-	-	-	-	-	-	-	-
Outcome of the second	Heptachlor Epoxide	0.0017	-	-	-	-	-	-	-	-	-	-
Inter- Catchehorstyree -	Methoxychlor	0.0017	150	0.0006	0.00274	-	-	-	-	-		-
Octacheme - - - -<	Mirex	-	0.8	-	-	-	-	-	-	-	-	-
Toxaphene - 15 0.001 - <	Octachlorostyrene	-	-	-	-	-	-	-	-			-
Paychonated Biphenys Unit of Dia Polychinated Biphenys (PCBs) 0.7 1 0.2341 0.277 - <	Toxaphene	-	15	0.0001	-	-	-	-	-	-		-
Inde Proprior Instance Operation (Section 2000) 0.17 10 0.277 -	Polychlorinated Biphenyls	0.47	10	0.0244	0.077							
Ancolar 121 Ancolar 122 Ancolar 1232 ·	Aroclor 1016	0.17	-	- 0.0341	0.277	-	-	-	-	-		-
Anoder 1232 - - -	Aroclor 1221	-	-	-	-	-	-	-	-	-	-	-
Aroder 1242 - <th< td=""><td>Aroclor 1232</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Aroclor 1232	-	-	-	-	-	-	-	-	-	-	-
Docus 1292 Arcolor 1250 I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	Aroclor 1242	-	-	-	-	-	-	-	-	-	-	-
Andor 1280 ·	Aroclor 1246	-	-	0.06	0.340	-	-	-	-	-	-	-
Per-and Polyfluoroalkyl Substances * -	Aroclor 1260	-	-	-	-	-	-	-	-			-
Perflurocotanic acid (PFOA) - - - 0.7 -	Per- and Polyfluoroalkyl Substances 5				-							
Perflucrocatine sulfnate (PFCS) - 2.5 - - 2.0 -	Perfluorooctanoic acid (PFOA)	-	-	-	-	0.7	-	-	-	-		-
Perfuscobutancic add (PFPA) - - 114 - - - -	Perfluorooctane sulfonate (PFOS)	-	2.5	-	-	2.0	-	-	-	-	-	-
Perfluidoringuation (ACID (PT-FAX)S) -	Perfluorobutanoic acid (PFBA)	-	-	-	-	114	-	-	-	-	-	-
Defluctorbesancic Acid (PFHA) - - 0.8 - <t< td=""><td>Perfluorohexane sulfonate (PFHX\xS)</td><td>1</td><td>1</td><td>1</td><td></td><td>2.3</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td></t<>	Perfluorohexane sulfonate (PFHX\xS)	1	1	1		2.3	-	-	-			-
Perflucoronancia Cadi (PFPA) - - - 0.08 - <t< td=""><td>Perfluorohexanoic Acid (PFHxA)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0.8</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Perfluorohexanoic Acid (PFHxA)	-	-	-	-	0.8	-	-	-	-	-	-
Perfluroropentancic Acid (PFPAA) - - - 0.8 -	Perfluorononanoic Acid (PFNA)	-	-	-	-	0.08	-	-	-	-	-	-
Instruction I <thi< th=""> <thi< td=""><td>Pertluoropentanoic Acid (PFPeA) Perfluorodecane Sulfonate</td><td></td><td>-</td><td>-</td><td>-</td><td>0.8</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td></thi<></thi<>	Pertluoropentanoic Acid (PFPeA) Perfluorodecane Sulfonate		-	-	-	0.8	-	-	-		-	-
Perfluorododesancic Acid (PFDoA) I <	Perfluorodecanoic Acid (PFDA)	1			-	-	-	-	-	-	-	
Perfuscroactane Sulfonanide (PFCSA) -	Perfluorododecanoic Acid (PFDoA)	-	-	-	-	-	-	-	-	-	-	-
Perfluorabitadecanace Acid (PF LDA) I <thi< th=""> I <thi< th=""></thi<></thi<>	Perfluorooctane Sulfonamide (PFOSA)	-	-	-	-	-	-	-	-	-	-	-
Instructioned and incomposition of a (FIRS) I <td>Pertluorotetradecanoic Acid (PFTEDA)</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td>	Pertluorotetradecanoic Acid (PFTEDA)		-	-	-	-	-	-	-		-	-
Perfuscrondecancic Acid (PFURA) - <t< td=""><td>perfluorobutane sulphonate (PFBS)</td><td></td><td>650</td><td>-</td><td>-</td><td>61</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td></t<>	perfluorobutane sulphonate (PFBS)		650	-	-	61	-	-	-	-		-
Perfuscundesancia Acid (PFUnA) - <th< td=""><td>Perfluoroheptanesulfonic acid</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Perfluoroheptanesulfonic acid	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds + BTEX -	Perfluoroundecanoic Acid (PFUnA)	-	-	:	:	-	-	-	-	-		-
Hexabinobenzene - 66 - 2.0 -	Volatile Organic Compounds + BTEX			-	-							
Lindare (Heaschlorocyclohexane) 0.00086 2 0.00094 0.00138 - <th< td=""><td>Hexachlorobenzene</td><td></td><td>65</td><td></td><td>-</td><td>2.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Hexachlorobenzene		65		-	2.0	-	-	-	-	-	-
Intervention - <t< td=""><td>Lindane (Hexachlorocyclohexane) Methyl tert-Butul Ether</td><td>0.00086</td><td>2</td><td>0.00094</td><td>0.00138</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td></t<>	Lindane (Hexachlorocyclohexane) Methyl tert-Butul Ether	0.00086	2	0.00094	0.00138	-	-	-	-		-	-
Benzene - 350 - - 11 - <th< td=""><td>Styrene</td><td>1</td><td>15,000</td><td></td><td>-</td><td>5.0</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td></th<>	Styrene	1	15,000		-	5.0	-	-	-	-	-	
Toluene - 6,500 - - 22,000 -	Benzene	-	350	-	-	11	-	-	-	-	-	-
i⊏trytoenzene - 8,500 10,000	Toluene	-	6,500	-	-	22,000	-	-	-	-	-	-
o Yulana	Lthylpenzene		8,500	1		10,000	-	-	-		-	-
no your and a second seco	m.p-Xylenes	1	1	1		-	-	-	-			-
Xylenes, Total - 15,000 150,000	Xylenes, Total	-	15,000	-	-	150,000	-	-	-	-	-	-

Notes: Notes: All parameter units in milligrams per kilogram (mg/kg), unless otherwise noted. OA/OC = Ouality Assurance/Quality Control FDA = Field Duplicate Available; FD = Field Duplicate < Indicates parameter was below laboratory equipment detection limit. *Italics* indicates he laboratory detection limit was greater than the standard *** indicates no standard or parameter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, henanthrene, and pyrene). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.4 sediment standards for freshwater sensitive use
 BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

3. Canadian Couroll of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

4. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soli Quality Guidelines; soil ingestion pathway to protect human health. If a pathway specific guideline was not available, the generic guideline was applied (residential / parkiand [RLPL] land use). I in 100.000 cancer risk level. 5. Health Canada: 2019. Updates to Health Canada Soli Screening Values for Perfluxoural/valed Subtances (PFAS). May 2019.

Health Canada. 2019. Updates to Health Canada Soil Scree	ning values for Perfluoroalkylated Substances (PEAS). May 2019.
Shaded	Parameter concentration exceeds applicable BC CSR Sediment Standard for freshwater sensitive use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Interim Sediment Quality Guideline (ISQG) for protection of freshwater aquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of freshwater aquatic life
Bold	Parameter concentration exceeds applicable CCME Soil Guideline for Protection of human health for residential / park land use

Data Sources
WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report)
Golder 2021 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022 HHERA
SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC.
February 2024

Table B-1b: Screening of Marine Sediment Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

_ocation	BC CCB Sadiment					SED21-01	SED21-01	SED21-02	SED21-02	SED21-02	SED21-03	
Sample Name	Standard for Marine	BC CSR	CCME Marine Sediment	CCME Marine Sediment	CCME	14412-06	14412-07	14412-03	14412-04	14412-05	14412-01	
Sample Date	and Estuarine Aquatic	Soil Standard for	Guideline (ISQG) for	Guideline (PEL) for	Soil Guideline for	2021-06-14	2021-06-14	2021-06-14	2021-06-14	2021-06-14	2021-06-14	:
Sample Depth	Life Sensitive Lise 1	Human Health ²	Aquatic Life ³	Aquatic Life ³	Human Health ⁴	0-0.2 m	0.35-0.45 m	0-0.2 m	0-0.2 m	0.35-0.45 m	0-0.2 m	
QA/QC	Life densitive dae							FDA	FD			
Field and Physical			r									
Moisture (%)	-	-	-	-	-	-	-	-	-	-	6.19	
Sieve - #200, 0.075mm (%)	-	-	-	-	-	99	99	27	99	99	99	
Sieve Texture (unitless)	-	-	-	-	-	Coarse	Coarse	Fine	Coarse	Coarse	Coarse	
oH (pH units)	-	-	-	-	-	9.13	9.09	8.65	8.59	8.53	9	
Total Inorganic Carbon (%)	-	-	-	-	-	0.13	0.02	0.06	0.03	0.07	0.19	
Iotal Carbon (%)	-	-	-	-	-	0.6	0.33	0.74	0.58	0.97	0.95	
Metals	-											
Aluminum	-	40,000	-	-	-	9,760	8,610	10,200	8,480	8,880	9,640	
Antimony	-	500	-	-	20	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	
Arsenic	26	40	-	-	12	1.6	1.5	1	1.7	1.6	1.7	
Barium	-	15,000	-	-	6,800	9.6	9.8	10.8	15	9.5	8.7	
Beryllium	-	150	-	-	75	0.1	0.1	0.1	0.1	0.1	0.1	
Bismuth	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Cadmium	2.6	40	-	-	14	0.11	0.09	0.12	0.12	0.11	0.09	
Jalcium	-	-	-	-	-	11,800	8,720	11,300	6,100	6,810	13,600	
Shromium	99	250	-	-	220	14	14	10	10	11	9	
Unromium, Hexavalent	-	-	-	-	-	<0.8	<0.4	<0.8	<0.8	<4	<0.4	
Shronium, mvalent	-	-	-	-	-	14	14	57	10	5	9	
Jobalt	-	25	- 10.7	-	50	0.2	4.8	5.7	5.1	5	5.4	
rop	07	7,500	10.7	106	1,100	15.000	9.7	15.000	10.5	12 900	16 200	
ood	60	120	-	-	140	15,000	7.2	5.2	5.9	5.7	5.2	
ithium	09	65			140	4.5	69	6.2	5.0	63	7.2	
Magnesium						5.410	4 350	5 180	4 4 4 0	4 530	5 160	
Magnesiam		10,000				231	103	206	105	205	210	
Manganese Mercury	0.43	25	0.13	0.7	7	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	
Molybdenum	0.40	400	0.15	0.7	10	< 0.01	< 0.2	< 0.2	< 0.2	0.2	0.02	
lickel		900			200	12.1	97	10.1	97	9.3	9.6	
Phosphorus		-	_	-	-	283	291	377	342	436	435	
Potassium		-	_	-		417	406	425	360	415	411	
Selenium		400	_	-	80	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Silver	-	400	-	-	20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Sodium	-	1.000.000	-	-	-	471	509	496	441	452	628	
Strontium	-	20.000	-	-	-	72	61	72	30	31	101	
Fhallium	-	-	-	-	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
[in	-	50.000	-	-	50	0.2	0.3	0.2	< 0.2	0.2	0.5	
Fitanium	-	-	-	-	-	838	726	1,080	774	874	789	
Jranium	-	250	-	-	23	< 0.2	< 0.2	0.2	< 0.2	0.3	< 0.2	
/anadium	-	400	-	-	130	38	32	40	33	35	36	
Zinc	170	25,000	-	-	10,000	35	29	29	28	30	44	
Zirconium	-	-	-	-	-	2.5	2.2	3.3	2.8	2.8	1.8	
Potroluom Hudrocarbons												
Acenaphthene	0.055	2 000	0.00671	0.0889							< 0.005	
Acenaphthylene	0.033	2,000	0.00587	0.128							< 0.005	
Anthracene	0.15	25 000	0.0469	0.245							< 0.004	
Benz(a)anthracene	0.43	95	0.0748	0.693		-					< 0.03	
Benzo(g.h.i)pervlene	-		0.0710	-		-					< 0.05	
Benzo[i]fluoranthene		95	-	-		-					< 0.02	
Benzo(k)fluoranthene	-	95	-	-	-	-					< 0.02	
Benzo(a)pyrene	0.47	10	0.0888	0.763	-	-	-	-	-	-	< 0.03	
Benzo(b)fluoranthene		95	-	-	-	-	-	-	-		< 0.02	
Benzo(b,j) fluoranthene	-	95	-	-	-	-	-		-	-	< 0.03	
Chrysene	0.52	400	0.108	0.846	-	-	-	-	-	-	< 0.05	
Dibenz(a,h)anthracene	0.084	10	0.00622	0.135	-	-	-	-	-	-	< 0.005	
luoranthene	0.93	3,500	0.113	1.494	-	-	-	-	-	-	< 0.01	
luorene	0.089	1,000	0.0212	0.144	-	-	-	-	-	-	< 0.02	
ndeno(1,2,3-c,d)pyrene	-	95	-	-	-	-	-	-	-	-	< 0.02	
I-Methylnaphthalene	-	500	-	-	-	-	-	-	-	-	< 0.005	
2-methylnaphthalene	0.12	100	0.0202	0.201	-	-	-	-	-	-	< 0.005	
Naphthalene	0.24	1,500	0.0346	0.391	-	-	-	-	-	-	< 0.005	
Phenanthrene	0.34	3,500	0.0867	0.544	-	-	-	-	-	-	< 0.02	
Pyrene	0.87	2,500	0.153	1.398	-	-	-	-	-	-	< 0.01	
Quinoline	-	5	-	-	-	-	-	-	-	-	< 0.05	
PAHs, total	10	-	-	-	-	-	-	-	-	-	0.100	
EPH (C10-C19)	-	1,000	-	-	-	-	-	-	-	-	< 20	
=PH (C19-C32)	-	1,000	-	-	-	-	-	-	-	-	< 20	
ight Extractable Petroleum Hydrocarbons (LEPH)	-	1,000	-	-	-	-	-	-	-	-	< 20	
leavy Extractable Petroleum Hydrocarbons (HEPH)	-	1,000	-	-	-	-	-	-	-	-	< 20	
Pesticides	1	1	1			0						
1,4-DDT	-	-	-	-	-	-	-	-	-	-	< 0.003	
p,p'-DDT	-	-	-	-	-	-	-		-	-	< 0.003	
DDT, Total	0.003	-	0.00119	0.00477	-	-	-	-	-	-	< 0.007	
			1									

Notes: All parameter units in milligrams per kilogram (mg/kg), unless otherwise noted. QA/QC = Quality Assurance/Quality Control FDA = Field Duplicate Available; FD = Field Duplicate < Indicates parameter was below laboratory equipment detection limit. Italics indicates the laboratory detection limit was greater than the standard

"-" indicates no standard or paramter was not analysed

For calculation of "PAHs, total", only PAH parameters outlined in Schedule 3.4 of the CSR were used in the calculation (acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene). Where the parameter was below the laboratory detection limit, a value corresponding to half the laboratory detection limit was conservatively used in the summation.

1. BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.4 sediment standards for marine water sensitive use

BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park, PL).
 Canadian Council of Ministers of the Environment (CCME). 1999. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life; interim sediment quality guidelines (ISQG) and probable effect levels (PEL).

A. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion pathway to protect human health. If a pathway
 specific guideline was not available, the generic guideline was applied (residential / parkland [RL/PL] land use).
 Shaded
 Parameter concentration exceeds applicable BC CSR Sediment Standard for marine and estuarine sensitive use

onaded	
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for human health (intake of contaminated soil or generic) for urban park land use
Black Border	Parameter concentration exceeds applicable CCME Ineterim Sediment Quality Guideline (ISQG) for protection of marineaquatic life
Pattern	Parameter concentration exceeds applicable CCME Predicted Effect Level (PEL) guideline for protection of marine aquatic life
Bold	Parameter concentration exceeds applicable CCME soil guideline for human health (intake of contaminated soil or generic) for residential / park land (RL/PL) land use

Data Sources WSP 2023 = Samples collected in October 2021, as part of the Supplemental Sediment Sampling in Support of the 2022/2023 HHERA

SED21-03
14412-02
2021-06-14
0.4-0.5 m
3.22
99
Coarse
9.14
0.03
0.43
0.550
9,550
~ 0.1
2.2
13.1
0.1
< 0.5
0.09
6,910
9
<0.4
9
5.1
7.9
14,100
6.5
6.2
4,980
199
< 0.01
0.2
8.9
366
491
< 0.1
< 0.5
619
015
-4/1
34 < 0.1
34 < 0.1
34 < 0.1 0.6 923
34 < 0.1 0.6 923
34 < 0.1 0.6 923 < 0.2
34 < 0.1 0.6 923 < 0.2 34 28
34 < 0.1 0.6 923 < 0.2 34 28 25
34 < 0.1 0.6 923 < 0.2 34 28 2.5
34 < 0.1 0.6 923 < 0.2 34 28 2.5 < 0.005 < 0.005 < 0.004 < 0.005
34 < 0.1 0.6 923 < 0.2 34 28 2.5 < 0.005 < 0.005 < 0.005 < 0.004 < 0.03 < 0.03 < 0.03 < 0.05
34 < 0.1 0.6 923 < 0.2 34 28 2.5 < 0.005 < 0.005 < 0.005 < 0.004 < 0.03 < 0.05 < 0.02
34 0.1 0.6 923 < 0.2 34 28 2.5 < 0.02 34 28 < 0.05 < 0.005 < 0.004 < 0.03 < 0.02
34 0.0 923 < 0.2 34 2.5 <0.005 < 0.005 < 0.002 < 0.003 <
34 0.1 0.6 923 < 0.2 34 28 2.5 < 0.05 < 0.005 < 0.005 < 0.004 < 0.03 < 0.02 < 0.03 < 0.02 < 0.02
$\begin{array}{c} 34\\ <0.1\\ 0.6\\ 923\\ <0.2\\ 34\\ 2.8\\ \hline\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.004\\ <0.03\\ <0.05\\ <0.02\\ <0.03\\ <0.02\\ <0.03\\ <0.03\end{array}$
34 0.1 0.6 923 < 0.2 34 28 2.5 < 0.005 < 0.002 < 0.003 < 0.003 < 0.003 < 0.05 < 0.005 < 0.003 < 0.005 < 0.005 < 0.005 < 0.003 < 0.005 < 0.005
34 0.1 0.6 923 0.2 2.8 <ul< th=""></ul<>
34 0.1 0.6 923 < 0.2 34 28 2.5 < 0.005 < 0.005 < 0.005 < 0.004 < 0.005 < 0.02 < 0.02 < 0.03 < 0.02 < 0.005 < 0.02 < 0.005 < 0.02 < 0.005 < 0.02 < 0.02 < 0.03 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.02 < 0.005 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.02 < 0.03 < 0.05 < 0.005 < 0.003 < 0.005 < 0.001
34 0.1 0.6 923 0.2 2.8 2.8 2.8 <l< th=""></l<>
$\begin{array}{r} 34\\ <0.1\\ 0.6\\ 923\\ <0.2\\ 34\\ 28\\ 2.5\\ \hline\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.002\\ <0.03\\ <0.02\\ <0.03\\ <0.02\\ <0.03\\ <0.02\\ <0.03\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.005\\ <0.01\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02$
34 < 0.1 0.6 923 < 0.2 2.5 < 0.05 < 0.005 < 0.004 < 0.005 < 0.004 < 0.05 < 0.005 < 0.02 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.005
$\begin{array}{r} 34\\ < 0.1\\ 0.6\\ 923\\ < 0.2\\ 34\\ 28\\ 2.5\\ \hline \\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.003\\ < 0.03\\ < 0.03\\ < 0.02\\ < 0.03\\ < 0.03\\ < 0.03\\ < 0.03\\ < 0.005\\ < 0.002\\ < 0.002\\ < 0.002\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.005\\ \end{array}$
34 0.1 0.6 923 < 0.2 2.8 2.8 <0.005 <0.004 <0.03 <0.05 <0.02 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.02 <0.05 <0.02 <0.02 <0.05 <0.005
$\begin{array}{r} 34\\ < 0.1\\ 0.6\\ 923\\ < 0.2\\ 34\\ 2.5\\ \hline \\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.004\\ < 0.03\\ < 0.02\\ < 0.03\\ < 0.03\\ < 0.03\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.0$
34 0.6 923 < 0.2 2.5 < 0.005 < 0.005 < 0.005 < 0.003 < 0.05 < 0.002 < 0.02 < 0.01 < 0.005 < 0.002 < 0.02 < 0.01 < 0.02 < 0.005 < 0.005 < 0.002 < 0.01 < 0.02 < 0.005 < 0.005 < 0.002 < 0.01 < 0.02 < 0.005 < 0.002 < 0.005 < 0.005
34 0.1 0.6 923 < 0.2 34 2.5 < 0.005 < 0.005 < 0.004 < 0.005 < 0.005 < 0.002 < 0.02 < 0.03 < 0.03 < 0.02 < 0.03 < 0.02 < 0.03 < 0.02 < 0.03 < 0.05 < 0.005 < < 0.005 < 0.02 < 0.012 < 0.02 < 0.02 < 0.02 < 0.012 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.04 < 0.05 < 0.02 < 0.04 < 0.05 <
34 0.6 923 < 0.2 2.5 < 0.005 < 0.005 < 0.005 < 0.003 < 0.05 < 0.02 < 0.02 < 0.00 < 0.005 < 0.002 < 0.02 < 0.005 < 0.005 < 0.002 < 0.01 < 0.005 < 0.005 < 0.005 < 0.002 < 0.01 < 0.005 <
34 0.1 0.6 923 < 0.2 34 2.5 < 0.005 < 0.005 < 0.004 < 0.005 < 0.005 < 0.002 < 0.02 < 0.03 < 0.05 < 0.005 < 0.012 < 0.005 < 0.005 < 0.005 < 0.012 < 0.015 < 0.012 < 0.015 < 0.016 /ul>
34 0.6 923 < 0.2 2,5 < 0.005 < 0.005 < 0.005 < 0.003 < 0.05 < 0.02 < 0.02 < 0.02 < 0.005 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.005 < 0.001 <
34 0.1 0.6 923 <0.2 2.5 <0.005 <0.005 <0.004 <0.03 <0.05 <0.02 <0.03 <0.02 <0.005 <0.02 <0.005 <0.02 <0.02 <0.02 <0.005 <0.02 <0.02 <0.02 <0.005 <0.02 <0.05 <0.05 <0.02 <0.05 <0.05 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05 <0.02 <0.05
34 0.6 923 < 0.2 2.5 < 0.005 < 0.005 < 0.005 < 0.003 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.005 < 0.02 < 0.02 < 0.005 < 0.005 < 0.02 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.02 < 0.001 < 0.02 < 0.011 < 0.02 < 0.011 < 0.02 < 0.02 < 0.011 < 0.02 < 0.02 < 0.011 < 0.02 < 0.02 < 0.02 < 0.02 < 0.011 < 0.02 < 0.02 < 0.011 < 0.02 < 0.02 < 0.011 < 0.02 < 0.011 < 0.02 < 0.02 < 0.02 < 0.011 < 0.02 <
34 < 0.1 0.6 923 < 0.2 2.5 < 0.005 < 0.004 < 0.005 < 0.004 < 0.03 < 0.05 < 0.004 < 0.05 < 0.005 < 0.004 < 0.03 < 0.05 < 0.005 < 0.002 < 0.005 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 < 0.005 < 0.002 < 0.005 < 0.002 < 0.005 < 0.002 < 0.005 <
$\begin{array}{r} 34\\ < 0.1\\ 0.6\\ 923\\ < 0.2\\ 34\\ 28\\ 2.5\\ \hline \\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.03\\ < 0.02\\ < 0.03\\ < 0.02\\ < 0.03\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.002\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ < 0.005\\ <$
34 0.1 0.6 923 <0.2 2.5 2.5 <0.005 <0.004 <0.005 <0.005 <0.02 <0.02 <0.005 <0.02 <0.005 <0.00
34 0.1 0.6 923 < 0.2 34 2.5 < 0.005 < 0.005 < 0.004 < 0.005 < 0.005 < 0.002 < 0.02 < 0.03 < 0.02 < 0.03 < 0.02 < 0.03 < 0.02 < 0.03 < 0.05 < 0.005 <l< td=""></l<>
34 0.1 0.6 923 < 0.2 2.5

February 2024

Table B-2: Screening of Surface Water Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Location	BC WQG for Freshwater	PC WOC for Drinking		Health Canada	RC17-01	RC17-04	RC17-08	RC17-12	RC17-13	RC17-17	RC17-17	SW21-01	SW21-03	SW21-03	SW21-07
Sample Name Sample Date	Aquatic Life	Water ¹	Aquatic Life	Guideline for Canadian	2017-12-06	2017-04500	2017-12-07	2017-12500	2017-13500	2017-12-07	2017-12-07	2021-10-25	2021-10-25	2021-10-25	2021-10-26
QA/QC	(Long-term Chronic) 1		(Long-term Chronic) ²	Drinking Water Quality ³	2011 12 00	2011 12 00	2011 12 07	2011 12 01	2011 12 01	FDA	FD	2021 10 20	FDA	FD	2021 10 20
Field and Physical		1	, ,		1										
Dissolved Oxygen, field measured (mg/L)	>= 8	-	-		11.92	11.12	10.88	10.26	8.14	9.21	9.21	7.65	6.65	6.65	5.81
Oxidation Reduction Potential, field measured (mV)	-	-	-	-		42	-	42.5	43.0	-	-	122.9	103.4	103.4	104.8
pH, field measured	6.5 - 9	-	-		7.48	7.59	7.65	7.64	7.62	7.63	7.63	6.79	7.48	7.48	6.88
Dissolved Organic Carbon (mg/L)	-	-	-	-	-	-	-	-	-	-	-	5.1	5.2		5.5
Metals, Dissolved															
Hardness (Dissolved) (mg/L)	-	-	-	-	-	-	-	-	-	-	-	107	109	108	59.3
Aluminum	100 (pH)	9,500	100 (pH)	100 (OG)	-	-	-	-	-	-	-	12	7	6	10
Arsenic	- 5	<u>9</u> 10	- 5	- 10	-	-	-	-	-	-	-	2.2	0.6	0.5	0.5
Barium	1,000	-	-	2,000	-	-	-	-	-	-	-	8.8	7.8	8.4	5.6
Beryllium	0.13	-	-	-	-	-	-	-	-	-	-	< 0.01	< 0.01	< 0.01	< 0.01
Bismuth Boron	- 1 200	- 5 000	- 1 500						-			< 0.05	< 0.05	< 0.05	< 0.05
Cadmium	0.14 - 0.23 (H)	5	0.1 - 0.17 (H)	7	-	-	-	-	-	-	-	< 0.01	< 0.01	0.01	0.03
Calcium	-	-	-	-	-	-	-	-	-	-	-	27000	27800	27600	15400
Chromium	1 (VI), 8.9 (III)	50	1 (VI), 8.9 (III)	50	-	-	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5
Cobalt	4	1	-		-	-	-	-	-	-	-	0.08	0.07	0.07	0.06
Copper	0.6 - 1.8 (pH, H, DOC)	2,000	2.0 - 2.55 (H)	2,000	-	-	-	-	-	-	- [2.5	3.1	2.9	3.7
Iron		-	300		-	-	-	-	-	-		13	40	36	55
Lead	5.0 - 6.9 (H)	5	1 - 3.5 (H)	5	-	-	-	-	-	-	-	< 0.05	< 0.05	< 0.05	0.07
Magnesium			-	-		-	-	-	-	-	-	9490	9520	9460	5070
Manganese	866 - 1,080 (H)	120	490 - 650 (pH, H)	120	-	-	-	-	-	-	-	16	12	12	12
Mercury	0.02	1	0.026	1	-	-	-	-	-	-	-	< 0.005	< 0.005	< 0.005	< 0.005
Molybdenum	1,000 25 - 102 (H)	88	73 25 - 102 (H)	-	-		-		-	-	-	2.36	1.98	1.94	1.73
Potassium	-	-	-		-	-	-	-	-	-	-	1470	1510	1480	1710
Selenium	2	10	1	50	-	-	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5
Silicon	-	-	-	-	-	-	-	-	-	-	-	5060	4640	4630	2650
Sodium	0.05 - 1.5 (H)		0.25			-	-	-	-	-		< 0.02	< 0.02 23400	< 0.02	< 0.02
Strontium	-	-	-	7,000	-	-	-	-	-	-	-	117	108	110	70.8
Sulphur (Colloidal)	-	-	-	-	-	-	-	-	-	-	-	8220	7570	7570	4750
Thallium	0.8	-	0.8	-	-	-	-	-	-	-	-	0.01	< 0.01	< 0.01	< 0.01
Titanium		-	-		-	-	-	-	-	-	-	2.7	3.2	3.0	2.3
Uranium	8.5	20	15	20	-	-	-	-	-	-	-	0.22	0.17	0.19	0.08
Vanadium	-	-	-		-	-	-	-	-	-	-	0.5	0.7	0.5	0.5
Zinc	7.5 - 21.8 (H)	3,000	21 - 64 (DOC, pH, H)		-	-	-	-	-		-	9 < 0.1	5	6 < 0.1	7
Metala Tatal															
Hardness (Total) (mg/L)		-	-	-	112	106	115	118	110	108	108	113	111	108	61.5
Aluminum	-	9,500	100 (pH)	100 (OG)	187	245	254	186	298	281	266	82	83	94	214
Antimony		9	-		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic Barium	5	10	5	10	0.53	0.51	0.51	0.44	0.53	0.42	0.49	0.2	0.4	< 0.1 9.8	0.5
Beryllium	0.13	-	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.05	< 0.05	< 0.05	< 0.05
Bismuth	-	-	-		-	-	-	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05
Boron	1,200	5,000	1,500	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	25	33	30	18
Calcium		-	0.11 - 0.16 (H) -	-	27200	25800	27500	28100	26100	25900	26000	29100	27900	27600	15800
Chromium	1 (VI), 8.9 (III)	50	1 (VI), 8.9 (III)	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.5	0.5	< 0.5	0.7
Cobalt	4	1		-	< 0.20	< 0.20	< 0.20	< 0.20	0.26	0.24	0.21	0.09	0.12	0.12	0.18
Copper	-	2,000	1.6 - 2.7 (H)	2,000	4.04	3.78	3.44	3.2	3.24	3.4 445	3.51 454	4.6	5.2 175	4.5	5.6 348
Lead	5.0 - 7.2 (H)	5	1.7 - 3.9 (H)	5	< 0.20	0.29	0.24	< 0.20	0.31	0.3	0.31	0.08	0.19	0.12	0.42
Lithium	-	-	-		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	1.0	1.3	1.3	1.0
Magnesium		-	-	-	10700	10200	11200	11600	10900	10500	10500	9830	10100	9610	5350
Manganese	876 - 1,120 (H) 0.02	120	-	120	40.3	35.8	43.4 < 0.010	34.9 < 0.010	52.2 < 0.010	< 0.010	< 0.010	< 0.005	< 0.005	< 0.005	< 0.005
Molybdenum	1,000	88	73	-	1.7	1.3	1.4	1.5	1.4	1.4	1.4	2.9	2.2	2.2	2.2
Nickel	66 - 108 (H)	80	25 - 106 (H)	-	1.0	< 1.0	1.0	< 1.0	1.0	1.0	1.0	0.8	0.8	0.7	1.0
Potassium	-	-	-	-	1510	1330	1420	1420	1360	1300	1330	1460	1580	1510	1730
Silicon	-	-	-	- -	< 0.10 -	< 0.10 -	< 0.10 -	-	< U.1U	< 0.10 -	-	< 0.5 5190	< 0.5 4950	4710	3170
Silver	0.05 - 1.5 (H)	-	0.25	-	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.02	< 0.02	< 0.02	< 0.02
Sodium	-	-	-	-	23200	22900	24700	24600	22800	22600	22500	21700	24200	22900	14300
Strontium	-	-	-	7,000	-	-	-	-	-	-	-	132	143	137	68.7
Thallium	0.8		-	-	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.02	< 0.02	< 0.02	< 0.02
Tin	-	-	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 0.05	< 0.05	< 0.05	< 0.05
Titanium	-	-		-	7.8	11.9	9.6	6.6	11	9.2	9	6.2	7.2	6.8	11.8
Uranium Vapadium	8.5	20	15	20	0.26	0.24	0.26	0.28	0.26	0.26	0.26	0.23	0.22	0.2	0.09
Zinc	33 - 69 (H)	3,000	17 - 68 (DOC, pH, H)	-	12.7	17.5	14.5	14.8	16.6	16.2	17.6	11	9	9	11
Zirconium	-	-	-	-	-	-	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5
Notes:															

3. Health Canada, 2022. Guidelines for Canadian Drinking Water Quality, maximum allowable concertration (MAC). If a MAC was not available or if the the operational guidance (OG) was more conservative, then the OG was applied. The aesthetic objective guidelines were not applied.

Shaded Parameter concentration exceeds applicable BC WQG for freshwater aquatic life

Parameter concentration exceeds applicable BC WQG for drinking water Underlined

Parameter concentration exceeds applicable CCME guideline for freshwater aquatic life Bold Pattern Parameter concentration exceeds applicable Health Canada guideline for drinking water

Data Sources
WSP 2023 = Samples collected in October 2021, in Support of the 2022/2023 HHERA.
SLR 2018 = Reay (KELSET) Creek Downstream Sediment and Surface water Assessment. Reay Creek, Sidney and North Saanich, BC. Prepared for PSPC

Table B-3: Screening of Porewater Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Location			PS21-01	PW21-01	PS21-02	PS21-03	PW21-03	PS21-04	PS21-05	PS21-06	PS21-07
Sample Type	BC WQG for Freshwater	CCME Freshwater	PW	SW	SW	SW	SW	PW	PW	PW	PW
Sample Name	Aquatic Life	Aquatic Life	06169-02	06169-04	06169-01	06169-03	06169-06	06169-05	06169-08	06169-09	06169-07
Date Deployed	(Long-term Chronic) ¹	(Long-term Chronic) ²	2021-10-25	2021-10-25	2021-10-25	2021-10-25	2021-10-25	2021-10-25	2021-10-25	2021-10-26	2021-10-26
Date Retrieved			2021-11-24	2021-11-24	2021-11-24	2021-11-24	2021-11-24	2021-11-24	2021-11-24	2021-11-24	2021-11-24
рН	-	-	7.4	7.8	7.7	7.8	8.0	8.0	7.6	7.9	7.7
Hardness as calcium carbonate (mg/L)	-	-	63.0	84.0	43	80.0	77.0	80.0	82.0	120.0	120.0
Metals, Dissolved											
Aluminum	100 (pH)	<u>100 (pH)</u>	< 120	53.0	< 47	25	25	< 18	69.6	< 83	<u>169</u>
Antimony	-	-	< 2.4	< 0.38	< 1	< 0.38	< 0.38	< 0.43	< 1.5	< 1.6	< 1.7
Barium	1,000	-	274.1	8.2	32.6	8.6	7.6	9.1	137.2	157.6	118.3
Beryllium	0.13	-	< 1.5	< 0.18	< 0.6	< 0.18	< 0.18	< 0.23	< 0.96	< 1	< 1.08
Boron	1,200	1,500	< 210	< 39	< 87	< 39	66	< 43	< 130	144	533
Cadmium	0.11 - 0.24 (H)	<u>0.11 - 0.18 (H)</u>	< 1.6	< 0.22	< 0.63	< 0.22	< 0.22	< 0.26	< 0.99	< 1.1	< 1.11
Calcium	-	-	98,305	21,000	28,745	20,000	19,000	23,200	86,653	134,858	96,936
Chromium	8.9 (III)	<u>8.9 (III)</u>	< 13	< 1.5	< 5	< 1.5	< 1.5	< 1.9	< 8	< 8.8	< 9
Hexavalent Chromium	1 (IV)	<u>1 (IV)</u>	< 440	< 10	< 150	< 10	< 10	< 41	< 260	< 290	< 300
Cobalt	4	-	3.06	< 0.13	0.84	< 0.13	< 0.13	< 0.16	8.01	20.83	5.49
Copper	1.4 - 2.8 (pH, H, DOC)	<u>2.0 - 2.8 (H)</u>	< 4.6	<u>3.7</u>	< 1.8	4.1	<u>4.1</u>	<u>2.5</u>	< 2.9	< 3.1	< 3.2
Iron	-	-	136,408	71.0	1,907	49	55	29.6	44,357	47,208	59,301
Magnesium	-	-	44,953	7,600	10,707	7,300	7,100	8,941	33,546	50,026	87,557
Manganese	882 - 1,130 (H)	<u> 350 - 470 (H)</u>	<u>16,083</u>	3.1	2,212	3.9	2.0	26.4	<u>11,402</u>	<u>31,774</u>	<u>10,221</u>
Molybdenum	1,000	73	< 1.8	2.0	1.6	1.9	1.9	1.8	1.9	4.6	< 1.36
Nickel	25 - 110 (H)	67 - 110 (H)	< 2.5	0.98	1.33	0.85	0.69	0.94	4.51	11.02	4.28
Silver	0.05 - 1.5 (H)	<u>0.25</u>	< 0.62	< 0.18	< 0.29	< 0.18	< 0.18	< 0.18	< 0.41	< 0.44	< 0.45
Sodium	-	-	58,127	18,000	11,430	18,000	17,000	17,636	45,817	58,162	328,410
Strontium	-	-	657	89.0	141	86.0	81.0	102	496	720	740
Tin	-	-	-	-	-	-	-	-	-	-	-
Vanadium	-	-	30.9	1.0	< 4.9	1.0	1.0	2.0	13.1	< 8.9	14.8
Zinc	7.5 - 30 (H)	<u>8.9 - 31 (pH, H, DOC)</u>	< 24	13	< 9.3	12	11	< 3.9	< 15	< 16	< 16.5

Notes:

All parameter units in micrograms per litre (ug/L), unless otherwise noted.

QA/QC = Quality Assurance/Quality Control; FDA = Field Duplicate Available; FD = Field Duplicate; PW = porewater; SW = surface water.

< Indicates parameter was below laboratory equipment detection limit.

Italics indicates the detection limit was greater than one or more screening criteria

1. BC Approved (BC ENV 2023) and Working (BC ENV 2021) Water Quality Guidelines (WQGs) for the protection of freshwater aquatic life. Long-term chronic guidelines were applied. (H) indicates hardness dependent standards, (pH) indicates pH dependent standards, (III) indicated trivalent chromium, (VI) indicates hexavalent chromium.

2. Canadian Council of Ministers of the Environment (CCME). 2007. Water Quality guidelines for the protection of freshwater aquatic life; long-term chronic guidelines were applied. (H) indicates hardness dependent standards, (pH) indicates pH dependent standards, (III) indicated trivalent chromium, (VI) indicates hexavalent chromium.

Shaded	Parameter concentration exceeds applicable BC WQG for freshwater aquatic life
Underlined	Parameter concentration exceeds applicable CCME guideline for freshwater aquatic life
Shaded Blue	Damaged or removed from sediment

Data Sources

WSP 2023 = Samples collected in October 2021, as part of the 2022/2023 WSP HHERA (this report)

February 2024

Table B-4: Screening of Elutriate Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Location			Elutriate Lab Control	Elutriate Site Control	Elutriate 1.6%	Elutriate 3.2%	Elutriate 6.5%	Elutriate 12%	Elutriate 25%	Elutriate 50%	Elutriate 100
Sample Name	BC WQG for Freshwater Aquatic Life	CCME Freshwater Aquatic Life	ELUTRIATE-	ELUTRIATE-	ELUTRIATE-1.6	ELUTRIATE-3.2	ELUTRIATE-6.5	ELUTRIATE-12	ELUTRIATE-25	ELUTRIATE-50	ELUTRIATE-1
Sample Date	(Long-term Chronic) ¹	(Long-term Chronic) ²	2021-11-19	2021-11-19	2021-11-19	2021-11-19	2021-11-19	2021-11-19	2021-11-19	2021-11-19	2021-11-19
QA/QC			N	N	N	Ν	Ν	Ν	Ν	N	Ν
Field + Physical			8.31	8.03	8.01	8 04	7 99	7 97	7 94	7 91	7.8
Dissolved Organic Carbon (mg/L)			1	7	7	8	-	-	-	-	-
Dissolved Metals	400 (-11)	400 (-11)	22	40	47	- 45					4 400
Antimony	100 (pH) -	<u>100 (pH)</u> -	< 1	< 1	< 1	< 15	-	-	-	-	<u>1,100</u> < 1
Arsenic	5	5	1	1	1	< 1	-	-	-	-	1
Barium	1,000	-	< 50	< 50	< 50	< 50	-	-	-	-	< 50
Bismuth	0.13		< 1	< 1	< 1	< 1	-	-	-	-	< 1
Boron	1,200	1,500	< 10	16	18	19	-	-	-	-	121
Cadmium	0.14 - 0.23 (H)	<u>0.149 (H)</u>	< 0.08	< 0.08	< 0.08	< 0.08	-	-	-	-	0.17
Calcium	- 8 0 (111)	- 8.0 (111)	45,800	16,900	17,100	16,700	-	-	-	-	9600
Hexavalent Chromium (Cr(VI))	1 (IV)	1 (IV)	< 10	< 10	-	-	-	-	-	-	-
Cobalt	4	-	< 1	< 1	< 1	< 1	-	-	-	-	< 1
Copper	0.6 - 3.9 (pH, H, DOC)	<u>2.2 (H)</u>	< 1	<u>4</u>	<u>4</u>	3	-	-	-	-	14
Lithium	-	-	< 100 4	< 100	< 100	< 100	-	-	-	-	2 2
Magnesium	-	-	15,200	5,470	5,560	5,470	-	-	-	-	4,930
Manganese	866 - 1,080 (H)	490 (H)	< 1	< 1	3	4	-	-	-	-	5
Mercury Molybdenum	0.02	0.026	< 0.025	< 0.025 2	< 0.025 2	< 0.025 2	-	-	-	-	< 0.025 3
Nickel	25 - 102 (H)	90 (H)	< 3	< 3	< 3	< 3	-	-	-	-	< 3
Potassium		-	2,560	1,040	1,200	1,070	-	-	-	-	2,760
Selenium	2	1	< 2.5	< 2.5	< 2.5	< 2.5	-	-	-	-	< 2.5
Silver	0.05 - 1.5 (H)	0.25	< 0.1	< 0.1	< 0.1	< 0.1	1		-	-	< 0.1
Sodium	-	-	5,520	12,700	13,200	13,300	-	-	-	-	27,100
Strontium	-	-	418	87	69	83	-	-	-	-	67
Thallium	0.8	0.8	< 0.1	4,900	5,000 < 0.1	4,900 < 0.1	-	-	-	-	5,400 < 0.1
Tin	-	-	4.4	< 0.5	< 0.5	< 0.5	-	-	-	-	< 0.5
Titanium	-	-	< 2	< 2	< 2	< 2	-	-	-	-	46
Uranium Vanadium	8.5	15	< 1	< 1	< 1	< 1	-	-	-	-	< 1
Zinc	7.5 - 21.8 (H)	17 - 25 (pH, H, DOC)	< 10	14	11	11	- 1	-	-	-	15
Zirconium			< 10	< 10	< 10	< 10	-	-	-	-	< 10
l otal Metals Aluminum	-	100 (pH)	19	168	657	1 140	1 840	2 790	5 910	11 700	22 700
Antimony	-	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	5	5	< 1	< 1	1	< 1	1	3	4	7	9
Barium Berullium	1,000	-	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	63 < 0.5
Bismuth	-	-	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Boron	1,200	1,500	< 10	14	15	18	20	26	35	53	94
Cadmium	-	<u>0.165 (H)</u>	< 0.016	0.045	0.145	<u>0.228</u> 23.500	0.526 23.600	<u>1.08</u>	<u>1.78</u> 22.300	3.95	18 200
Chromium	8.9 (III)	8.9 (III)	< 0.5	0.6	1.9	2.6	3.7	7.8	13.8	27.3	55.2
Hexavalent Chromium (Cr(VI))	1 (IV)	1 (IV)	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Copper	4	- 2 5 (LI)	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	1.3	2.3	4.5	9.9
Iron		∠.J (⊓) -	< 100	371	791	1290	2250	4320	7,870	16,900	33,500
Lead	5.0 - 7.2 (H)	<u>3 (H)</u>	0.2	0.4	0.9	1.5	2.8	5.3	9.6	12.2	25.3
Lithium	-	-	4	< 1	< 1	1	2	3	5	9	17
Manganese	- 876 - 1.120 (H)	- 530 (H)	< 5	0,840	0,810 29	48	7,220 91	178	326	9,080	1.310
Mercury	0.02	0.026	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	0.025	0.03	0.071
Molybdenum	1,000	73	< 1	2	2	2	2	2	3	3	3
Nickel Potassium	66 - 108 (H)	99 (H)	< 3 3 260	< 3 1 210	< 3 1 230	3 1 400	< 3 1 460	5 1.680	2 070	18 2 890	31 4 480
Selenium	2	1	< 0.5	< 0.5	< 0.5	0.8	0.8	< 0.5	1.6	< 0.5	1.7
Silicon	-		1,900	5,200	5,700	6,300	7,200	11,200	16,200	28,000	45,200
Silver	0.05 - 1.5 (H)	<u>0.25</u>	< 0.1 7 150	< 0.1 16 500	< 0.1 16 500	< 0.1 17 400	< 0.7 18 100	< 0.1 20 100	21 300	25 200	34.800
Strontium	-	-	381	81	72	71	67	82	90	90	97
Sulphur		-	24,800	6,500	6,300	6,200	6,100	6,600	6,500	6,600	7,400
Thallium Tin	0.8	0.8	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Titanium			4.0 < 1	8	27	47	66	92	155	268	413
Uranium	8.5	15	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
Vanadium		-	< 1	2	4	3	5	8	14	28	43
Zing Zirconium	7.5 - 28.5 (H) -	<u>19 - 26 (pH, H, DUC)</u> -	< 10 < 10	< 10	< 10	< 10	< 10	<u>52</u> < 10	< 10	< 10	< 10
Notes:											

Notes: All parameter units in micrograms per litre (ug/L), unless otherwise noted. QA/QC = Quality Assurance/Quality Control; N = no duplicate sample available. < Indicates parameter was below laboratory equipment detection limit. *Italicized* indicates the detection limit was greater than one or more screening criteria 1. BC Approved (BC ENV 2023) and Working (BC ENV 2021) Water Quality Guidelines (WQGs) for the protection of freshwater aquatic life. Long-term chronic guidelines were applied. (H) indicates hardness dependent standards, (pH) indicates pH dependent standards, (III) indicated trivalent chromium, (VI) indicates hexavalent chromium. 2. Canadian Council of Ministers of the Environment (CCME). 2007. Water Quality guidelines for the protection of freshwater aquatic life; long-term chronic guidelines were applied. (H) indicates hardness dependent standards, (pH)

Shaded

Parameter concentration exceeds applicable BC WQG for freshwater aquatic life

Underlined Parameter concentration exceeds applicable CCME guideline for freshwater aquatic life

Table B-5: Screening of Soil Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Location					TP19-4	TP19-5	TP19-6	TP19-7	TP19-8	TP19-8	TP19-9	CS21-01	CS21-02	CS21-03	CS21-04	CS21-05	CS21-05	CS21-06	CS21-07	CS21-08	CS21-09	CS21-10
Sample Name	BCCSP	BC CSP	CCME	COME	264120	264121	264122	264123	264124	264126	264125	06190-01	06190-02	06190-03	06190-04	06190-05	06190-06	06190-07	06191-06	06190-09	06190-08	06190-10
Sample Date	Soil Standard for	Soil Standard for	Soil Guideline for	Soil Guideline for	2010-06-07	2010-06-07	2010-06-07	2010-06-07	2010-06-07	2010-06-07	2010-06-07	2021-10-26	2021-10-26	2021-10-26	2021-10-26	2021-10-27	2021-10-27	2021-10-27	2021-10-29	2021-10-27	2021-10-27	2021-10-27
Sample Date	Ecological Health 1	Human Health 1	Environmental Health	Human Health 2	0.1 m	2013-00-07	2013-00-07	0.1 m	0.1 m	2013-00-07	2013-00-07	2021-10-20	0.0.1 m	0.0.1 m	0.0.1 m	0.0.1 m	0.0.1 m	0.0.1 m				
	Ecological Health	nullan nealth	2	Human Health	0.1111	0.1111	0.1111	0.1111	0.1111	0.1111	0.1111	0-0.1111	0-0.1111	0-0.1111	0-0.1111	0-0.11II	0-0.1 III	0-0.1111	0-0.1111	0-0.1111	0-0.1 11	0-0.1111
									FDA	FD						FDA	FD					
Field + Physical		1			5.04	5.04	5.00	F 45	F 00	5 70	F 00	5.4	5.00	E 47	57	F 40	5.40	F 47	5 7	5.04	5.05	
pH (pH units)	-	-	-	-	5.84	5.94	5.39	5.45	5.69	5.78	5.63	5.4	5.99	5.47	5.7	5.18	5.16	5.47	5.7	5.64	5.85	5.57
Sieve > 19mm (%)	-	-	-	-	-	-	-	-	-	-	-	< 1	< 1	10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1
Sieve >4.75mm (%)	-	-	-	-	-	-	-	-	-	-	-	8	4	34	< 1	< 1	< 1	4	< 1	< 1	< 1	12
Sieve >0.075inini (%)	-	-	-	-	-	-	-	-	-	-	-	ZJ	ZJ	19 Fine	JO	JZ	- Si Fine	JZ	Z3 Fine	ZU	JZ	JZ
Grain Size	-	-	-	-	-	-	-	-	-	-	-	4 79	FILE	4 90	4 20	7 29	Fille 6.16	FILLE	109	Fille 5 71	105	2 55
Total Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	4.70	5.20	4.09	4.29	7.20	0.10	0.34	4.90	5.71	4.05	3.33
Total Organic Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	4.72	0.06	4.03	4.24	1.2	0.00	0.3	4.94	5.67	4	3.55
Total Inorganic Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	0.06	0.06	0.06	0.05	0.08	0.1	0.04	0.04	0.04	0.05	< 0.02
Metals																						
Aluminum	-	40,000	-	-	19,100	21,000	16,600	14,400	20,700	17,300	20,000	21,500	22,700	20,400	18,800	17,800	18,700	18,500	20,400	22,800	20,500	20,200
Antimony	20	500	20	20	0.3	0.2	0.3	0.2	0.2	0.2	0.5	0.5	0.3	0.4	0.5	0.4	0.4	0.3	0.5	0.5	0.4	0.3
Arsenic	25	40	17	31	4.3	4.3	2.3	1.7	2.6	3.3	4.1	4	5	5	5	5	5	4	6	5	5	3
Barium	700	15,000	500	6,800	100	108	105	89.6	66.9	64.7	83.4	129	109	99.7	103	103	110	87.5	122	122	108	102
Beryllium	150	150	4	75	0.3	0.3	0.3	0.2	0.2	0.3	0.4	0.4	0.5	0.4	0.4	0.4	0.4	0.3	0.4	0.5	0.4	0.4
Bismuth	-	-	-	-	-	-	-	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	30	40	10	14	2.3	0.48	3.16	0.5	0.67	0.66	4.92	1.08	1.18	9.63	9.89	2.83	3.2	0.31	9.23	4.15	9.59	0.23
Calcium	-	-	-	-	-	-	-	-	-	-	-	6,370	8,670	8,190	7,420	7,060	7,240	6,660	7,330	7,700	7,560	5,670
Chromium	200	250	65 ^a	220	38	28	40	17	23	23	50	39	44	78	78	45	52	30	80	53	67	34
Cobalt	45	25	50	50	10.5	10.3	8.4	6.3	7.3	7.3	12.3	12.8	13.9	12.5	13.4	11.5	12.9	10.2	13.9	14.6	13.1	11.8
Copper	150	7,500	63	1,100	19.9	20	21.1	12.5	16.8	17.5	39.7	21.7	35.9	36.8	36.9	30.2	33.8	17	41.6	40.6	36.3	29.3
Iron	-	35,000	-	-	23,900	26,200	18,100	18,300	25,300	20,900	28,200	27,400	31,500	27,400	27,000	23,800	25,000	24,400	26,900	29,200	27,200	26,500
Lead	550	120	300	140	17.7	9.1	18.7	10.1	11.7	11.9	24.4	14.3	10.6	26.2	32.2	25.1	26.7	10.9	37.4	25.9	28.7	11.9
Lithium	-	65	-	-	10.4	11.3	9.6	7.4	8.8	9.5	13.9	14.9	17.2	13.6	14.1	12.8	14	13.1	16	16.9	14.6	14.1
Magnesium	-	-	-	-	-	-	-	-	-	-	-	6,220	7,580	6,990	6,230	5,450	5,690	6,280	6,430	6,560	6,540	6,180
Manganese	2000	10,000	-	-	700	690	474	525	411	417	950	909	630	574	825	588	627	688	1010	1160	866	633
Mercury	40	25	12	7	0.07	0.04	0.07	0.04	0.04	0.05	0.07	0.02	0.04	0.03	0.04	0.05	0.05	0.03	0.06	0.07	0.04	< 0.01
Molybdenum	80	400	10	10	0.5	0.5	0.5	0.3	0.4	0.4	0.8	1.2	0.4	0.7	0.8	0.6	0.7	0.4	0.8	1	0.6	0.4
Nickel	150	900	45	200	19.6	21.9	17.5	13.6	17.4	17.8	26	25.2	32.7	24.7	27	22.9	26.7	22.8	29	29.8	27.4	27.6
Phosphorus	-	-	-	-	-	-	-	-	-	-	-	650	733	1290	1080	814	879	681	960	987	1020	660
Potassium	-	-	-	-	-	-	-	-	-	-	-	771	1350	834	747	715	729	636	826	909	920	894
Selenium	1.5	400	1	80	< 0.1	< 0.1	0.4	< 0.1	0.4	0.2	0.4	0.1	0.4	0.4	0.5	0.5	0.5	0.4	0.5	0.6	0.6	0.2
Silver	20	400	20	20	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sodium	-	1,000,000	-	-	-	-	-	-	-	-	-	214	241	222	267	233	244	163	341	298	307	211
Strontium	-	20,000	-	-	34	36	43	32	25	24	41	37	53	47	45	46	47	44	55	52	46	34
Thallium	9	-	1.4	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tin	50	50,000	50	50	0.5	0.4	0.7	0.4	0.6	0.7	1.2	0.6	0.5	1	1.5	1	1.4	0.4	1.6	1.1	1.3	0.7
Titanium	-	-	-	-	-	-	-	-	-	-	-	1,060	1,050	838	776	707	751	1,060	832	858	919	884
Uranium	500	250	500	23	0.5	0.4	0.5	0.2	0.4	0.4	0.7	0.5	0.5	0.9	0.8	0.7	0.7	0.3	0.9	1	0.9	0.5
Vanadium	150	400	130	130	53	60	43	36	47	48	59	70	87	68	66	64	74	69	73	75	67	72
Zinc	450	25,000	250	10,000	117	85	94	71	74	75	210	107	99	132	179	103	118	81	200	179	179	85
Zirconium	-	-	-	-	-	-	-	-	-	-	-	0.7	1.1	0.4	0.4	0.4	0.5	0.8	0.8	0.4	0.7	0.5

Notes:

All parameter units in milligrams per kilogram (mg/kg), unless otherwise noted.

QA/QC = Quality Assurance/Quality Control; FDA = Field Duplicate Available; FD = Field Duplicate.

< Indicates parameter was below laboratory equipment detection limit.

1. BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for toxicity to soil invertebrates and plants or Schedule 3.1 Part 2 soil standards to protect ecological and human health (urban park; PL) and Schedule 3.1 Part 1 soil standards for intake of contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

2. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion or 2. Canadan Contact pathways to protect human and ecological health. If a pathway specific guideline was not available, the generic guideline was applied (residentail / parkland [RL/PL] land use). 1 in 100,000 cancer risk level.

a. BC ENV. 2023. Protocol 4 for Contaminated Sites - Establishing Local Background Concentrations in Soil. BC Ministry of Environment and

Shaded	Parameter concentration exceeds applicable BC CSR Soil Standard for toxicity to soil invertebrates and plants for urban park land use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Bold	Parameter concentration exceeds applicable Canadian Council of Ministers of the Environment (CCME) Soil guideline for environmental health for residential / park land use
Pattern	Parameter concentration exceeds applicable CCME Soil guideline for proteection of human health for residential / park land use

Data Sources Thurber 2019 = Reay Creek Dam Geotechnical Site Characterization Report. Report for the Town of Sidney. WSP 2023 = Samples collected in October 2021, as part of the 2023 WSP HHERA (this report)

Table B-5: Screening of Soil Analytical Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Location			COME		CS21-11	CS21-12	CS21-13	CS21-14	CS21-15	CS21-16	CS21-16	CS21-17	CS21-18	CS21-19	CS21-20
Sample Name	BC CSR	BC CSR	Soil Guideline for	CCME	06190-11	06190-12	06191-05	06191-04	06191-03	06191-07	06191-08	06191-09	06191-10	06191-01	06191-02
Sample Date	Soil Standard for	Soil Standard for	Soli Guidenne Ior	Soil Guideline for	2021-10-27	2021-10-27	2021-10-28	2021-10-28	2021-10-28	2021-10-29	2021-10-29	2021-10-29	2021-10-29	2021-10-28	2021-10-28
Sample Depth	Ecological Health ¹	Human Health ¹		Human Health ²	0-0.1 m										
QA/QC										FDA	FD				
Field + Physical															
pH (pH units)	-	-	-	-	5.68	5.76	4.73	5.41	5.79	6.19	9.27	5.45	4.95	5.52	4.57
Sieve >19mm (%)	-	-	-	-	5	< 1	< 1	< 1	< 1	< 1	< 1	11	< 1	< 1	< 1
Sieve >4.75mm (%)	-	-	-	-	15	< 1	< 1	1	< 1	< 1	< 1	3	< 1	< 1	< 1
Sieve >0.075mm (%)	-	-	-	-	26	10	8	9	1	3	1	8	23	10	16
Grain Size	-	-	-	-	Fine										
Total Carbon (%)	-	-	-	-	3.38	5.99	6.96	9.15	6.15	7.4	7.54	11.2	3.62	7.89	9.9
Total Organic Carbon (%)	-	-	-	-	3.38	5.93	6.89	9.09	6.11	7.31	7.46	11.1	3.62	7.84	9.71
Total Inorganic Carbon (%)	-	-	-	-	< 0.02	0.06	0.07	0.06	0.04	0.09	0.08	0.1	< 0.02	0.05	0.19
Metals															
Aluminum	-	40,000	-	-	21,900	23,600	25,100	25,100	28,700	26,100	27,500	21,700	23,100	22,000	23,600
Antimony	20	500	20	20	0.3	0.5	0.8	0.4	0.9	0.9	0.8	0.5	0.3	0.4	0.7
Arsenic	25	40	17	31	4	6	6	4	6	8	7	4	3	5	4
Barium	700	15,000	500	6,800	98.8	125	134	139	148	166	158	118	116	105	103
Beryllium	150	150	4	75	0.4	0.5	0.5	0.5	0.6	0.6	0.5	0.4	0.6	0.4	0.4
Bismuth	-	-	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	30	40	10	14	1.08	6.34	13.2	3.13	10.6	14.8	13.9	1.01	0.43	0.41	0.98
Calcium	-	-	-	-	6,470	8,890	7,710	9,000	8,910	9,900	11,100	7,950	4,210	8,230	8,010
Chromium	200	250	65 ^a	220	36	64	80	52	92	100	91	37	48	37	46
Cobalt	45	25	50	50	11.3	14.3	14.5	12.5	17.8	19.9	17.9	14.5	17.8	15.1	12.7
Copper	150	7,500	63	1,100	26.4	43.9	49.2	31.1	63.8	65.4	59.7	28.4	20.1	26.1	42.4
Iron	-	35,000	-	-	28,100	31,400	31,800	29,000	34,400	34,900	38,500	27,700	27,900	29,400	29,400
Lead	550	120	300	140	16	32.8	42.9	31.6	55	62.7	58.1	38	28.1	47.5	84.8
Lithium	-	65	-	-	14.3	16.7	17.9	16.2	21.0	22.1	20.3	14.3	21.7	15.7	16.5
Magnesium	-	-	-	-	6,490	7,230	7,570	7,870	8,600	7,880	8,490	6,440	6,810	7,470	8,780
Manganese	2000	10,000	-	-	638	1140	1080	676	1240	1930	1870	961	665	775	446
Mercury	40	25	12	7	0.01	0.05	0.07	0.06	0.08	0.1	0.07	0.06	0.02	0.04	0.04
Molybdenum	80	400	10	10	0.5	1	1.1	0.6	1.3	1.3	1.3	0.7	0.5	0.4	0.7
	150	900	45	200	24.2	31.2	31.6	29.1	39.1	41.4	36.9	25	32.6	27.7	30.5
Phosphorus	-	-	-	-	5//	940	1320	696	1260	1540	1740	655	358	428	544
Potassium	-	-	-	-	1000	832	822	949	1220	1100	1170	708	5/6	832	/80
Selenium	1.5	400	1	80	0.4	0.7	0.8	0.4	0.7	0.7	0.7	0.5	0.4	0.4	0.5
Silver	20	400	20	20	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Streptium	-	1,000,000	-	-	100	511	323	500	406	309	417	450	231	519	010
Thellium	-	20,000	-	-	57	50	49	59	55	70	73	59	40	52	45
Tin	9	-	1.4	50	0.1	11	16	< 0.1 1	10.1	0.1	1.6	< 0.1	< 0.1	< 0.1	12
Titanium	50	50,000	50	-	0.0	1.1	012	1 030	1.0	1.7	1 150	773	1.080	1 170	1.2
llranium	-	- 250	500	-	0.6	000	312	0.7	1 /	1.070	13	06	0.4	0.4	1,050
Vanadium	150	400	130	130	69	74	77	70	87	90	85	68	100	80	77
Zinc	450	25 000	250	10 000	96	228	255	1 115	365	464	418	181	100	76	167
Zirconium		20,000	230	-	0.6	0.5	0.5	07	0.6	1.8	1.5	0.9	11	13	17
		-	-	-	0.0	0.0	0.0	0.7	0.0	1.0	1.0	0.0	1.1	1.0	1.7

Notes:

All parameter units in milligrams per kilogram (mg/kg), unless otherwise noted.

QA/QC = Quality Assurance/Quality Control; FDA = Field Duplicate Available; FD = Field Duplicate.

< Indicates parameter was below laboratory equipment detection limit.

1. BC Contaminated Sites Regulation (CSR) (BC Reg. 375/96; includes BC Reg 128/2022. App 2 and BC Reg 133/2022, amendments effective March 1, 2023 as amended by BC Reg 2/2023 and BC Reg 35/2023) Schedule 3.1 Part 1 soil standards for toxicity to soil invertebrates and plants or Schedule 3.1 Part 2 soil standards to protect ecological and human health (urban park; PL) and Schedule 3.1 Part 1 soil standards for intake of

contaminated soil or Schedule 3.1 Part 2 soil standards to protect human health (urban park; PL).

2. Canadian Council of Ministers of the Environment (CCME). 1999. Environmental and Human Health Soil Quality Guidelines; soil ingestion or

2. Contractant control of winds of the function of the information (control, 1999, Environmental and transmission of quarky curdenines, so in negative of direct control pathway specific guideline was not available, the generic guideline was applied (residentail / parkland [RL/PL] land use). 1 in 100,000 cancer risk level.

a. BC ENV. 2023. Protocol 4 for Contaminated Sites - Establishing Local Background Concentrations in Soil. BC Ministry of Environment and

Shaded	Parameter concentration exceeds applicable BC CSR Soil Standard for toxicity to soil invertebrates and plants for urban park land use
Underlined	Parameter concentration exceeds applicable BC CSR Soil Standard for intake of contaminated soil for urban park land use
Bold	Parameter concentration exceeds applicable Canadian Council of Ministers of the Environment (CCME) Soil guideline for environmental health for residential / park land use
Pattern	Parameter concentration exceeds applicable CCME Soil guideline for proteection of human health for residential / park land use

Data Sources

Thurber 2019 = Reay Creek Dam Geotechnical Site Characterization Report. Report for the Town of Sidney. WSP 2023 = Samples collected in October 2021, as part of the 2023 WSP HHERA (this report)

Sample Location			SED21-31	SED21-31		
Sample Name			06185-04	06185-05		DF
Sample Collection Date	Units	RDL	2021-10-21	2021-10-21	RPD (%)	(unitless)
Sample Matrix			SE	SE		(
Field and Physical						
pН	pH units	0.1	7.54	7.61	1	n/c
Total Carbon	%	0.02	0.46	0.31	<u>39</u>	n/c
Total Inorganic Carbon	%	0.02	< 0.02	< 0.02	n/c	0
Total Organic Carbon	%	0.02	0.46	0.31	39	n/c
Metals						
Aluminum	ug/g	10	13000	11100	16	n/c
Antimony	ug/g	0.1	0.2	4.2	<u>182</u>	n/c
Arsenic	ug/g	1	5	13	<u>89</u>	n/c
Barium	ug/g	0.5	54.8	36.5	40	n/c
Beryllium	ug/g	0.1	0.3	0.2	n/c	1
Bismuth	ug/g	0.5	< 0.5	< 0.5	n/c	0
Cadmium	ug/g	0.01	1.11	0.93	18	n/c
Calcium	ug/g	10	6960	6060	14	n/c
Chromium	ug/g	1	21	19	10	n/c
Chromium Hexavalent (Cr(VI))	mg/L	0.3	< 0.3	< 0.3	n/c	0
Chromium Trivalent (Cr(III))	ug/g	0.4	21	19	10	n/c
Cobalt	ug/g	0.1	11.3	8.9	24	n/c
Copper	ug/g	0.2	19.5	22.2	13	n/c
Iron	ug/g	10	24500	21800	12	n/c
Lead	ug/g	0.1	4.4	12.5	<u>96</u>	n/c
Lithium	ug/g	0.5	6.3	5.6	12	n/c
Magnesium	ug/g	10	6000	5050	17	n/c
Manganese	ug/g	1	935	563	<u>50</u>	n/c
Mercury	ug/g	0.01	0.02	0.02	n/c	0
Molybdenum	ug/g	0.2	0.6	1	n/c	2
Nickel	ug/g	0.5	17.6	14.9	17	n/c
Phosphorus	ug/g	5	763	527	<u>37</u>	n/c
Potassium	ug/g	5	374	296	23	n/c
Selenium	ug/g	0.1	0.3	0.2	n/c	1
Silver	ug/g	0.5	< 0.5	< 0.5	n/c	0
Sodium	ug/g	5	219	224	2	n/c
Strontium	ug/g	1	34	29	16	n/c
Thallium	ug/g	0.1	< 0.1	< 0.1	n/c	0
Tin	ug/g	0.2	1.6	1.3	21	n/c
Titanium	ug/g	1	1050	1030	2	n/c
Uranium	ug/g	0.2	0.3	0.2	n/c	0.5
Vanadium	ug/g	1	55	47	16	n/c
Zinc	ug/g	1	144	253	<u>55</u>	n/c
Zirconium	ug/g	0.1	3.7	3.9	5	n/c

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Sample Location			SED21-34	SED21-34		
Sample Name	11		06185-08	06185-09		DF
Sample Collection Date	Units	RDL	2021-10-21	2021-10-21	RPD (%)	(unitless)
Sample Matrix			SE	SE		. ,
Field and Physical						
pH	pH units	0.1	5.98	5.98	0	n/c
Total Carbon	%	0.02	0.57	0.54	5	n/c
Total Inorganic Carbon	%	0.02	< 0.02	< 0.02	n/c	0
Total Organic Carbon	%	0.02	0.57	0.54	5	n/c
Metals						
Aluminum	ug/g	10	18200	22000	19	n/c
Antimony	ug/g	0.1	0.3	0.3	n/c	0
Arsenic	ug/g	1	6	6	0	n/c
Barium	ug/g	0.5	71.8	79.6	10	n/c
Beryllium	ug/g	0.1	0.4	0.3	n/c	1
Bismuth	ug/g	0.5	< 0.5	< 0.5	n/c	0
Cadmium	ug/g	0.01	1.64	1.47	11	n/c
Calcium	ug/g	10	6360	6490	2	n/c
Chromium	ug/g	1	40	45	12	n/c
Chromium Hexavalent (Cr(VI))	mg/L	0.3	< 0.3	< 0.3	n/c	0
Chromium Trivalent (Cr(III))	ug/g	0.4	40	45	12	n/c
Cobalt	ug/g	0.1	14.5	16.8	15	n/c
Copper	ug/g	0.2	30.1	33.9	12	n/c
Iron	ug/g	10	29600	34600	16	n/c
Lead	ug/g	0.1	6.9	8.1	16	n/c
Lithium	ug/g	0.5	13.2	14.2	7	n/c
Magnesium	ug/g	10	7650	9260	19	n/c
Manganese	ug/g	1	481	565	16	n/c
Mercury	ug/g	0.01	0.03	0.02	n/c	1
Molybdenum	ug/g	0.2	0.3	0.3	n/c	0
Nickel	ug/g	0.5	29.3	36	21	n/c
Phosphorus	ug/g	5	676	670	1	n/c
Potassium	ug/g	5	952	1210	24	n/c
Selenium	ug/g	0.1	0.3	0.3	n/c	0
Silver	ug/g	0.5	< 0.5	< 0.5	n/c	0
Sodium	ug/g	5	433	496	14	n/c
Strontium	ug/g	1	29	31	7	n/c
Thallium	ug/g	0.1	< 0.1	< 0.1	n/c	0
Tin	ug/g	0.2	0.6	0.6	n/c	0
Titanium	ug/g	1	1320	1450	9	n/c
Uranium	ug/g	0.2	0.3	0.4	n/c	0.5
Vanadium	ug/g	1	73	84	14	n/c
Zinc	ug/g	1	148	164	10	n/c
Zirconium	ug/g	0.1	6.4	6.4	0	n/c

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Table B-6: Sediment QA/QC Results **Detailed Human Health and Ecological Risk Assessment** KELSET, Downstream of KELSET Pond, BC

Sample Location			SED21-BG-01	SED21-BG-01		
Sample Name		RDL	06189-01	06189-02		DF
Sample Collection Date	Units		2021-10-22	2021-10-22	RPD (%)	(unitless)
Sample Matrix			SE	SE		(******,
Field and Physical						
pH	pH units	0.1	7.87	7.67	3	n/c
Total Carbon	%	0.02	0.89	0.89	0	n/c
Total Inorganic Carbon	%	0.02	< 0.02	< 0.02	n/c	0
Total Organic Carbon	%	0.02	0.89	0.89	0	n/c
Metals						
Aluminum	ug/g	10	15200	16000	5	n/c
Antimony	ug/g	0.1	0.5	0.4	n/c	1
Arsenic	ug/g	1	2	7	<u>111</u>	n/c
Barium	ug/g	0.5	57.4	59.2	3	n/c
Beryllium	ug/g	0.1	0.3	0.3	n/c	0
Bismuth	ug/g	0.5	< 0.5	< 0.5	n/c	0
Cadmium	ug/g	0.01	0.17	0.17	0	n/c
Calcium	ug/g	10	6700	6470	3	n/c
Chromium	ug/g	1	21	26	21	n/c
Chromium Hexavalent (Cr(VI))	mg/L	0.3	< 0.3	< 0.3	n/c	0
Chromium Trivalent (Cr(III))	ug/g	0.4	21	26	21	n/c
Cobalt	ug/g	0.1	8	9.9	21	n/c
Copper	ug/g	0.2	29	31	7	n/c
Iron	ug/g	10	22200	22500	1	n/c
Lead	ug/g	0.1	14.4	8.8	<u>48</u>	n/c
Lithium	ug/g	0.5	9.4	9.6	2	n/c
Magnesium	ug/g	10	5430	5640	4	n/c
Manganese	ug/g	1	572	637	11	n/c
Mercury	ug/g	0.01	0.03	0.03	n/c	0
Molybdenum	ug/g	0.2	0.6	0.5	n/c	0.5
Nickel	ug/g	0.5	18.1	21.1	15	n/c
Phosphorus	ug/g	5	619	596	4	n/c
Potassium	ug/g	5	700	740	6	n/c
Selenium	ug/g	0.1	0.1	0.3	n/c	2
Silver	ug/g	0.5	< 0.5	< 0.5	n/c	0
Sodium	ug/g	5	309	307	1	n/c
Strontium	ug/g	1	33	32	3	n/c
Thallium	ug/g	0.1	< 0.1	< 0.1	n/c	0
Tin	ug/g	0.2	0.5	0.7	n/c	1
Titanium	ug/g	1	1050	1170	11	n/c
Uranium	ug/g	0.2	0.3	0.3	n/c	0
Vanadium	ug/g	1	51	63	21	n/c
Zinc	ug/g	1	110	124	12	n/c
Zirconium	ug/g	0.1	3.1	3.3	6	n/c

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Sample Location			CS21-05	CS21-05		
Sample Name			06190-05	06190-06		
Sample Collection Date	Units	RDL	2021-10-27	2021-10-27	RPD (%)	DF
Sample Matrix			SO	SO	((unitless)
Sample Depth			0 - 0.1 m	0 - 0.1 m		
Carbon Content			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
Total Carbon	%	0.02	7.28	6.16	17	n/c
Total Inorganic Carbon	%	0.02	0.08	0.1	n/c	1
Total Organic Carbon	%	0.02	7.2	6.06	17	n/c
Field + Physical						
pH	pH units	0.1	5.18	5.16	0	n/c
Sieve >19mm (%)	%	1	< 1	< 1	n/c	0
Sieve >4.75mm (%)	%	1	< 1	< 1	n/c	0
Sieve >0.075mm (%)	%	1	32	37	14	n/c
Metals					-	
Aluminum	ug/g	10	17800	18700	5	n/c
Antimony	ug/g	0.1	0.4	0.4	n/c	0
Arsenic	ug/g	1	5	5	n/c	0
Barium	ug/g	0.5	103	110	7	n/c
Beryllium	ug/g	0.1	0.4	0.4	n/c	0
Bismuth	ug/g	0.5	< 0.5	< 0.5	n/c	0
Cadmium	ug/g	0.01	2.83	3.2	12	n/c
Calcium	ug/g	10	7060	7240	3	n/c
Chromium	ug/g	1	45	52	14	n/c
Cobalt	ug/g	0.1	11.5	12.9	11	n/c
Copper	ug/g	0.2	30.2	33.8	11	n/c
Iron	ug/g	10	23800	25000	5	n/c
Lead	ug/g	0.1	25.1	26.7	6	n/c
Lithium	ug/g	0.5	12.8	14	9	n/c
Magnesium	ug/g	10	5450	5690	4	n/c
Manganese	ug/g	1	588	627	6	n/c
Mercury	ug/g	0.01	0.05	0.05	n/c	0
Molybdenum	ug/g	0.2	0.6	0.7	n/c	0.5
Nickel	ug/g	0.5	22.9	26.7	15	n/c
Phosphorus	ug/g	5	814	879	8	n/c
Potassium	ug/g	5	715	729	2	n/c
Selenium	ug/g	0.1	0.5	0.5	n/c	0
Silver	ug/g	0.5	< 0.5	< 0.5	n/c	0
Sodium	ug/g	5	233	244	5	n/c
Strontium	ug/g	1	46	47	2	n/c
Thallium	ug/g	0.1	< 0.1	< 0.1	n/c	0
Tin	ug/g	0.2	1	1.4	33	n/c
Titanium	ug/g	1	707	751	6	n/c
Uranium	ug/g	0.2	0.7	0.7	n/c	0
Vanadium	ug/g	1	64	74	14	n/c
Zinc	ug/g	1	103	118	14	n/c
Zirconium	ug/g	0.1	0.4	0.5	n/c	1

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Sample Location			CS21-16	CS21-16		
Sample Name			06191-07	06191-08		
Sample Collection Date	Units	RDL	2021-10-29	2021-10-29	RPD (%)	DF
Sample Matrix			SO	SO	((unitless)
Sample Depth			0 - 0.1 m	0 - 0.1 m		
Carbon Content			• • • • •	• • • • • •		
Total Carbon	%	0.02	7.4	7.54	2	n/c
Total Inorganic Carbon	%	0.02	0.09	0.08	n/c	0.5
Total Organic Carbon	%	0.02	7.31	7.46	2	n/c
Field + Physical						
pН	pH units	0.1	6.19	9.27	<u>40</u>	n/c
Sieve >19mm (%)	%	1	< 1	< 1	n/c	0
Sieve >4.75mm (%)	%	1	< 1	< 1	n/c	0
Sieve >0.075mm (%)	%	1	3	1	n/c	2
Metals						
Aluminum	ug/g	10	26100	27500	5	n/c
Antimony	ug/g	0.1	0.9	0.8	12	n/c
Arsenic	ug/g	1	8	7	13	n/c
Barium	ug/g	0.5	166	158	5	n/c
Beryllium	ug/g	0.1	0.6	0.5	18	n/c
Bismuth	ug/g	0.5	< 0.5	< 0.5	n/c	0
Cadmium	ug/g	0.01	14.8	13.9	6	n/c
Calcium	ug/g	10	9900	11100	11	n/c
Chromium	ug/g	1	100	91	9	n/c
Cobalt	ug/g	0.1	19.9	17.9	11	n/c
Copper	ug/g	0.2	65.4	59.7	9	n/c
Iron	ug/g	10	34900	38500	10	n/c
Lead	ug/g	0.1	62.7	58.1	8	n/c
Lithium	ug/g	0.5	22.1	20.3	8	n/c
Magnesium	ug/g	10	7880	8490	7	n/c
Manganese	ug/g	1	1930	1870	3	n/c
Mercury	ug/g	0.01	0.1	0.07	35	n/c
Molybdenum	ug/g	0.2	1.3	1.3	0	n/c
Nickel	ug/g	0.5	41.4	36.9	11	n/c
Phosphorus	ug/g	5	1540	1740	12	n/c
Potassium	ug/g	5	1100	1170	6	n/c
Selenium	ug/g	0.1	0.7	0.7	0	n/c
Silver	ug/g	0.5	< 0.5	< 0.5	n/c	0
Sodium	ug/g	5	389	417	7	n/c
Strontium	ug/g	1	76	73	4	n/c
Thallium	ug/g	0.1	0.1	< 0.1	n/c	0
Tin	ug/g	0.2	1.7	1.6	6	n/c
Titanium	ug/g	1	1070	1150	7	n/c
Uranium	ug/g	0.2	1.4	1.3	7	n/c
Vanadium	ug/g	1	90	85	6	n/c
Zinc	ug/g	1	464	418	10	n/c
Zirconium	ug/g	0.1	1.8	1.5	18	n/c

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Table B-8: Water QA/QC Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Sample Location			SW21-03	SW21-03		
Sample Name			06183-02	06183-03		DE
Sample Collection Date	Units	RDL	2021_10_25	2021_10_25	RPD (%)	(unitless)
Sample Matrix			2021-10-20 WG	2021-10-20 WG		(unitiess)
Metals, Dissolved			~~~	~~~~		
Aluminum	na\l	2	7	6	n/c	0.5
Antimony	ug/L	02	1	0.5	n/c	2.5
Arsenic	ua/L	0.1	0.6	0.5	18	n/c
Barium	ua/L	0.2	7.8	8.4	7	n/c
Bervllium	ua/L	0.01	< 0.01	< 0.01	n/c	0
Bismuth	ua/L	0.05	< 0.05	< 0.05	n/c	0
Boron	ua/L	2	26	28	7	n/c
Cadmium	ua/L	0.01	< 0.01	0.01	n/c	0
Calcium	ug/L	50	27800	27600	1	n/c
Chromium	ug/L	0.5	< 0.5	< 0.5	n/c	0
Cobalt	ug/L	0.05	0.07	0.07	n/c	0
Copper	ug/L	0.2	3.1	2.9	7	n/c
Hardness	ug/L	100	109000	108000	1	n/c
Iron	ug/L	10	40	36	n/c	0.4
Lead	ug/L	0.05	< 0.05	< 0.05	n/c	0
Lithium	ug/L	0.5	0.9	1	n/c	0.2
Magnesium	ug/L	50	9520	9460	1	n/c
Manganese	ug/L	1	12	12	0	n/c
Mercury	ug/L	0.005	< 0.005	< 0.005	n/c	0
Molybdenum	ug/L	0.05	1.98	1.94	2	n/c
Nickel	ug/L	0.2	0.8	0.5	n/c	1.5
рН	pH units	0.01	7.58	7.57	0	n/c
Potassium	ug/L	50	1510	1480	2	n/c
Selenium	ug/L	0.5	< 0.5	< 0.5	n/c	0
Silicon	ug/L	50	4640	4630	0	n/c
Silver	ug/L	0.02	< 0.02	< 0.02	n/c	0
Sodium	ug/L	50	23400	23800	2	n/c
Strontium	ug/L	0.1	108	110	2	n/c
Sulphur (Colloidal)	ug/L	500	7570	7570	0	n/c
Thallium	ug/L	0.01	< 0.01	< 0.01	n/c	0
Tin	ug/L	0.05	< 0.05	< 0.05	n/c	0
Titanium	ug/L	0.5	3.2	3	6	n/c
Uranium	ug/L	0.01	0.17	0.19	11	n/c
Vanadium	ug/L	0.5	0.7	0.5	n/c	0.4
Zinc	ug/L	2	5	6	n/c	0.5
Zirconium	ug/L	0.1	< 0.1	< 0.1	n/c	0

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

Table B-8: Water QA/QC Results Detailed Human Health and Ecological Risk Assessment KELSET, Downstream of KELSET Pond, BC

Sample Location			SW/21 03	SW/21 03		
Sample Location			06183.02	06183.03		DE
Sample Collection Date	Units	RDL	2021 10 25	2021 10 25	RPD (%)	(unitions)
Sample Collection Date			2021-10-25	2021-10-25 WC		(unitiess)
Motale Total			WG	WG		
	ug/l	Б	02	04	12	n/o
Antimony	ug/L	0.5	< 0.5	- 0 F	12	0
Artaniony	ug/L	0.5	< 0.5	< 0.5	n/c	3
Arsenic	ug/L	0.1	0.4	< 0.1	1//C	
Darium	ug/L	0.2	9.0	9.0	2	1//C
Derymum	ug/L	0.05	< 0.05	< 0.05	n/c	0
Bismum	ug/L	0.05	< 0.05	< 0.05	1/C	0
Bolon	ug/L	C 01	33	30	10	n/c
Cadmium	ug/L	0.01	0.02	0.03	n/C	
	ug/L	50	27900	27600		n/c
Chromium	ug/L	0.5	0.5	< 0.5	n/c	0
	ug/L	0.05	0.12	0.12	n/c	0
Copper	ug/L	0.5	5.2	4.5	14	n/c
Hardness	ug/L	100	111000	108000	3	n/c
Iron	ug/L	10	175	169	3	n/c
Lead	ug/L	0.05	0.19	0.12	n/c	1.4
Lithium	ug/L	0.5	1.3	1.3	n/c	0
Magnesium	ug/L	50	10100	9610	5	n/c
Manganese	ug/L	1	16	15	6	n/c
Mercury	ug/L	0.005	< 0.005	< 0.005	n/c	0
Molybdenum	ug/L	0.1	2.2	2.2	0	n/c
Nickel	ug/L	0.5	0.8	0.7	n/c	0.2
рН	pH units	0.01	7.58	7.57	0	n/c
Potassium	ug/L	100	1580	1510	5	n/c
Selenium	ug/L	0.5	< 0.5	< 0.5	n/c	0
Silicon	ug/L	50	4950	4710	5	n/c
Silver	ug/L	0.02	< 0.02	< 0.02	n/c	0
Sodium	ug/L	100	24200	22900	6	n/c
Strontium	ug/L	0.1	143	137	4	n/c
Sulphur (S)	ug/L	500	7730	7410	4	n/c
Thallium	ug/L	0.02	< 0.02	< 0.02	n/c	0
Tin	ug/L	0.05	< 0.05	< 0.05	n/c	0
Titanium	ug/L	0.5	7.2	6.8	6	n/c
Uranium	ug/L	0.01	0.22	0.2	10	n/c
Vanadium	ug/L	1	1	1	n/c	0
Zinc	ug/L	5	9	9	n/c	0
Zirconium	ug/L	0.5	< 0.5	< 0.5	n/c	0

Notes:

RPD = Relative percent difference; the difference between two values divided by the mean of the two values.

RPD is calculated when the mean concentration is greater than five times the laboratory reporting limit.

DF = Difference factor; the absolute difference between two values divided by the laboratory reporting limit.

DF is calculated when the mean concentration is less than five times the laboratory reporting limit.

n/c = Not Calculated

LRL = Laboratory Reporting Limit

APPENDIX C

Listed Species Search

Scientific Name	English Name	BC List	COSEWIC	SARA Status
Abies grandis / Mahonia nervosa	grand fir / dull Oregon-grape	Red		
Abies grandis / Tiarella trifoliata	grand fir / three-leaved foamflower	Red		
Abronia latifolia	yellow sand-verbena	Blue		
Accipiter gentilis laingi	Northern Goshawk, laingi subspecies	Red	Threatened	Threatened
Aechmophorus occidentalis	Western Grebe	Red	Special Concern	Special Concern
Allium amplectens	slimleaf onion	Blue		
Alloaona townsendiana	Oregon Forestsnail	Red	Endangered	Endangered
Alnus rubra / Carex obnupta [Populus trichocarna]	red alder / slough sedge [black cottonwood]	Red		
Alnus rubra / Lysichiton americanus	red alder / skunk cabbage	Red		
Alnus rubra / Ruhus spectabilis / Fauisetum arvense	red alder / salmonberry / common horsetail	Blue		
Amodramus savannarum	Grasshopper Sparrow	Red		
Anarta adwardcii	Edwarde' Boach Moth	Red	Endangorod	Endangorod
		Red	Endangered	Endangered
Anaxyrus boreas	Western Toad	Yellow	Special Concern	Special Concern
Aneides vagrans	Wandering Salamander	Blue	Special Concern	Special Concern
Arbutus menziesii / Arctostaphylos columbiana	arbutus / hairy manzanita	Red		
Ardea herodias fannini	Great Blue Heron, fannini subspecies	Blue	Special Concern	Special Concern
Artemisia campestris - Festuca rubra / Racomitrium canescens	northern wormwood - red fescue / grey rock-moss	Red		
Asio flammeus	Short-eared Owl	Blue	Threatened	Special Concern
Athene cunicularia	Burrowing Owl	Red	Endangered	Endangered
Balsamorhiza deltoidea	deltoid balsamroot	Red	Endangered	Endangered
Bartramia aprica	rigid apple moss	Red	Endangered	Endangered
Bartramia longicauda	Upland Sandpiper	Red	U	J. J
Bidens amplissima	Vancouver Island beggarticks	Blue	Special Concern	Special Concern
Bolboschoenus maritimus var. paludosus Alkali Marsh	seacoast bulrush Alkali Marsh	Red		
Rotaurus lentiainosus	American Bittern	Blue		
Brachuramphus marmoratus	Marblad Murrolat	Blue	Threatoned	Threatened
Branta harriala	Iviai pieu Iviurreieu	Blue	inreatened	medleneu
Branca berfilla	Didit.	Blue		
Buteo lagopus	Rough-legged Hawk	Blue		
Buteo swainsoni	Swainson's Hawk	Red		
Butorides virescens	Green Heron	Blue		
Calcarius pictus	Smith's Longspur	Blue		
Calidris canutus	Red Knot	Red	Endangered/Threater	Endangered/Threatened
Callophrys eryphon sheltonensis	Western Pine Elfin, sheltonensis subspecies	Blue		
Callophrys johnsoni	Johnson's Hairstreak	Red		
Callophrvs mossii mossii	Moss' Elfin, mossii subspecies	Red		
Camissonia contorta	contorted-pod evening-primrose	Red	Endangered	Endangered
Cardellina canadensis	Canada Warbler	Blue	Special Concern	Threatened
Carox laciocarna Bhunchocnora alha	clander codra, white back ruch	Bod	openia concern	mediciled
Carex lusiocarpa - Rhynchospora aba	Sienuer seuge - white beak-rush	Red		
Curex lyingbyer Herbaceous vegetation	Lyngbye's sedge herbaceous vegetation	Red		
Carex macrocephala Herbaceous Vegetation	large-headed sedge Herbaceous Vegetation	Red		
Carex tumulicola	foothill sedge	Yellow	Endangered	Endangered
Carychium occidentale	Western Thorn	Blue		
Castilleja levisecta	golden paintbrush	Red	Endangered	Endangered
Castilleja victoriae	Victoria's owl-clover	Red	Endangered	Endangered
Cephalanthera austiniae	phantom orchid	Red	Endangered	Threatened
Cercyonis pegala incana	Common Wood-nymph, incana subspecies	Red		
Chondestes grammacus	Lark Sparrow	Blue		
Chordeiles minor	Common Nighthawk	Yellow	Special Concern	Threatened
Chrysemys picta	Northern Painted Turtle	No Status	Endangered/Special (Endangered/Special Concern
Chrysemys picta pop. 1	Northern Painted Turtle - Pacific Coast Population	Red	Threatened	Endangered
Cladonia decorticata	strin-tease nivie	Blue		
Clarkia nurnurea sen auadrinulnora	wine-cup clarkia	Red		
Clarkia parparea SSP. quaanvamera	wine-cup Clarkia	Reu		
Claytonia Washingtoniana	washington springbeauty	Kea Malla	Constal Co	
Coccotnraustes vespertinus	Evening Grosbeak	Yellow	Special Concern	Special Concern
Loccyzus americanus	Yellow-billed Cuckoo	Red		
Coenonympha tullia insulana	Common Ringlet, insulana subspecies	Red		
Contia tenuis	Common Sharp-Tailed Snake	Red	Threatened	Endangered
Contopus cooperi	Olive-sided Flycatcher	Blue	Special Concern	Threatened
Copablepharon fuscum	Sand-verbena Moth	Red	Endangered	Endangered
Corallorhiza maculata var. ozettensis	Ozette coralroot	Blue		
Corynorhinus townsendii	Townsend's Big-eared Bat	Blue		
Crassula connata	Erect Pigmyweed	Blue		
Cryntomastix devia	Puget Oregonian	Red	Extirnated	Extinct
Cynseloides niner	Black Swift	Blue	Endangered	Endangered
Cyperolaces Inger	Monarch	Red	Endangered	Special Concern
Duniuus piexippus	wonarth	Reu	chuangered	special concern
vermatocarpon intestinijorme	quined stippieback	BIUE		
Descnampsia cespitosa ssp. beringensis - Hordeum brachyantherum	tutted hairgrass - meadow barley	Red		
Distichlis spicata - Sarcocornia pacifica	seashore saltgrass - Pacific swampfire	Red		
Dolichonyx oryzivorus	Bobolink	Blue	Threatened	Threatened
Dulichium arundinaceum Herbaceous Vegetation	three-way sedge	Red		
Eleocharis palustris Herbaceous Vegetation	common spike-rush Herbaceous Vegetation	Blue		
Epargyreus clarus	Silver-spotted Skipper	Blue		
Epargyreus clarus californicus	Silver-spotted Skipper, californicus subspecies	Red		
Epilobium densiflorum	dense spike-primrose	Red	Endangered	Endangered
Enilohium torrevi	brook spike-primrose	Red	Endangered	Endangered
Eromonhila alportris striggta	Horned Lark striggta subspecies	Rod	Endongorad	Endangered
Eremophila alpestris strigata	nomed Lark, strigata subspecies	Reu	chuangered	Enuangereu
Erigeron philadelphicus var. glaber	sait marsh Philadelphia daisy	Red		
Erynnis propertius	Propertius Duskywing	Red		

Scientific Name	English Name	BC List	COSEWIC	SARA Status
Erythemis collocata	Western Pondhawk	Blue		
Fuchloe ausonides insulanus	Large Marble insulgnus subspecies	Red	Extirnated	Extinct
Euclide ausomaes instalands	Challes Coo Line	Dive	Canadal Canada	Createl Canada
Eumetopias jubatus	Steller Sea Lion	Blue	Special Concern	Special Concern
Euphagus carolinus	Rusty Blackbird	Blue	Special Concern	Special Concern
Euphydryas editha taylori	Edith's Checkerspot, taylori subspecies	Red	Endangered	Endangered
Funhves vestris	Dun Skinner	Blue	Threatened	Threatened
	Dun skipper	Diuc	Incatchea	medeled
Eurybia radulina	rough-leaved aster	Red		
Falco mexicanus	Prairie Falcon	Red		
Falco peregrinus	Peregrine Falcon	No Status	Special Concern	Special Concern
	Perceptine Feleen gratum subspecies	Ded	Special Contern	Special Concern
Faico peregrinus anatum	Peregrine Faicon, anatum subspecies	кеа		Special Concern
Falco peregrinus pealei	Peregrine Falcon, pealei subspecies	Blue	Special Concern	Special Concern
Falco rusticolus	Gyrfalcon	Blue		
Eastusa roomari Kaalaria magrantha	Boomor's forcus innograce	Rod		
	Koelilei siescue - juliegiass	Reu		
Fratercula cirrhata	Tufted Puffin	Blue		
Fratercula corniculata	Horned Puffin	Red		
Fravinus latifolia	Oregon ash	Red		
	Nasthara Falsar	De d		
Fulmarus glacialis	Northern Fulmar	Red		
Galba bulimoides	Prairie Fossaria	Blue		
Galha vancouverensis	Vancouver Eossaria	Red		
		neu n		
Gasterosteus sp. 2	Enos Lake Limnetic Stickleback	Red	Endangered	Endangered
Gasterosteus sp. 3	Enos Lake Benthic Stickleback	Red	Endangered	Endangered
Githonsis specularioides	common bluecup	Blue		
Clausidium annuat i	North on Directop	Dive		
Glauciaium gnoma swarthi	Northern Pygmy-owi, swarthi subspecies	Blue		
Glehnia littoralis ssp. leiocarpa	American glehnia	Blue		
Haliotis kamtschatkana	Northern Abalone	Red	Endangered	Endangered
Hannah Wendaman dan ka	Deserved and the share	Ded	Thursday	Thursday
Hemphillia aromeaarius	Dromedary Jumping-slug	кеа	Inreatened	Inreatened
Hemphillia glandulosa	Warty Jumping-slug	Red	Special Concern	Special Concern
Hesperia colorado oregonia	Western Branded Skinner oregonia subspecies	Red	Endangered	
linuada sustias	Rese Swellew	Dive	Created Conserv	Threatened
Hirunuo rusticu	Barri Swallow	ыце	special concern	Inreatened
Hosackia gracilis	seaside bird's foot lotus	Red	Endangered	Endangered
Hosackia pinnata	bog bird's-foot lotus	Red	Endangered	Endangered
	Courses Town	Dive		
Hyaroprogne caspia	Caspian Tern	Blue		
Icaricia icarioides blackmorei	Boisduval's Blue, blackmorei subspecies	Blue		
Icaricia saepiolus insulanus	Greenish Blue, insulanus, subspecies	Red	Endangered	Endangered
latavia virona	Valley, breasted Chat	Ded	Endengered	Endengered
icteria virens	rellow-breasted chat	Red	Endangered	Endangered
Juncus arcticus - Plantago macrocarpa	arctic rush - Alaska plantain	Red		
Juncus kellogaji	Kellogg's rush	Red	Endangered	Endangered
	California Cull	Dive	0.0	
Larus cuijornicus	California Gui	ыце		
Lathyrus littoralis	silky beach pea	Red	Threatened	
Levmus mollis, ssp. mollis, - Lathyrus japonicus	dune wildrye - beach pea	Red		
	Manauria mandau faam	Ded	Threatened	Threatened
Limnantnes macounin	Wacouri s meadow-toam	Red	Inreatened	Inreatened
Limnodromus griseus	Short-billed Dowitcher	Blue		
Limosa haemastica	Hudsonian Godwit	Red	Threatened	
Lithohatas ninians	Northern Leonard Freg	Rod	Endangered	Endangered
Litilobutes pipiens	Northern Leopard Flog	Reu	Enuangereu	Enuangereu
Lomatium dissectum	fern-leaved desert-parsley	Red		
Lomatium papilioniferum	butterfly bearing lomatium	Red	Threatened	Threatened
Lupinus lenidus	prairie lupine	Rod	Endangered	Endangered
		neu n	Linuangereu	
Lupinus microcarpus var. microcarpus	dense-flowered lupine	Red	Endangered	1-E (2006)
Lupinus oreganus var. kincaidii	Kincaid's lupine	Unknown	Extirpated	Extinct
Marah oregana	coast manroot	Red	Endangered	
A 4	uddha araa alla	Deal	Ender served	Forder and
Meconella oregana	white mecohelia	кеа	Endangered	Endangered
Megascops kennicottii	Western Screech-Owl	No Status	Threatened	Threatened
Meaascops kennicottii kennicottii	Western Screech-Owl. kennicottii subspecies	Blue	Threatened	Threatened
Malanarnas lawis	Lowis's Woodpockor	Plue	Threatened	Threatened
weighter pes rewis	Lewiss wooupecker	Blue	Inieateneu	Inteateneu
Melanitta americana	Black Scoter	Blue		
Melanitta perspicillata	Surf Scoter	Blue		
Menyanthes trifoliata - Carey Jasiocarna	huckhean - slender sedge	Blue		
Missourie bississil	sector scage	Dide	Forderserved	Forder and d
Microseris bigelovii	coast microseris	Red	Endangered	Endangered
Mirounga angustirostris	Northern Elephant Seal	Red		
Musculium partumeium	Swamp Fingernailclam	Blue		
	Long Fingerneilelem	Dive		
wusculum transversum	Long Fingernaliciam	Blue		
Mustela richardsonii anguinae	Ermine, anguinae subspecies	Blue		
Myosurus minimus - Montia spp Limnanthes macounii	tiny mousetail - montias - Macoun's meadow-foam	Red		
Mustic lucifuque	Little Brown Mustic	Vollow	Endangorod	Endangorod
wyou's lucijugus	Little Brown Wyotis	reliow	Endangered	Endangered
Myrica gale / Carex sitchensis	sweet gale / Sitka sedge	Red		
Nannopterum auritum	Double-crested Cormorant	Blue		
Nearctula sp. 1	Threaded Vertigo	Blue	Special Concern	Special Concern
исинский эр. 1		Dide		
Numenius americanus	Long-billed Curlew	Blue	Special Concern	Special Concern
Nuttallanthus texanus	Texas toadflax	Blue		
Nucticorax nucticorax	Black-crowned Night-beron	Rod		
	black-ci owned Night-neron	neu		
Umus audouini	Audouin's Night-stalking Tiger Beetle	Red	Inreatened	Inreatened
Oncorhynchus clarkii clarkii	Cutthroat Trout, clarkii subspecies	Blue		
Ophiogomphus occidentis	Sinuous Snaketail	Blue		
		Dide		
Oreoscoptes montanus	Sage Ihrasher	Red	Endangered	Endangered
Orthocarpus bracteosus	rosy owl-clover	Red	Endangered	Endangered
Parnassius clodius claudianus	Clodius Parnassian, claudianus, subspecies	Blue	-	-
Personal courses a la seconda de la	Desle Meretela Desservice di Subspecies	Diuc		
Parnassius smintneus olympiannus	KOCKY MOUNTAIN Parnassian, olympiannus subspecies	Blue		
Patagioenas fasciata	Band-tailed Pigeon	Blue	Special Concern	Special Concern

Scientific Name	English Name	BC List	COSEWIC	SARA Status
Pelecanus erythrorhynchos	American White Pelican	Red		
Phalaropus lobatus	Red-necked Phalarope	Blue	Special Concern	Special Concern
Physicania detersa	hottlebrush frost	Red		
Dhucella preningua	Bocky Mountain Physic	Rhuo		
Physella propinqua	Rocky Wountain Physa	Blue		
Physella virginea	Sunset Physa	Blue		
Pinus contorta / Sphagnum spp. CDFmm	lodgepole pine / peat-mosses CDFmm	Red		
Pituophis catenifer	Gophersnake	No Status		Extinct
Pituonhis catenifer catenifer	Gonher Snake catenifer subspecies	Red	Extirnated	Extinct
Plagiobothrus figuratus son figuratus	fragrant panceraflower	Red	Endopgorod	Endangered
Plugiobolin'ys jiguralus ssp. jiguralus	iragrant populorinower	Red	Endangered	Endangered
Plagiobothrys tenellus	slender popcornflower	Red	Threatened	Threatened
Planorbula campestris	Meadow Rams-horn	Blue		
Platanthera ephemerantha	white-lip rein orchid	Blue		
Pluvialis dominica	American Golden-Plover	Blue		
Poperates argmineus affinis	Vesner Sparrow, affinis subspecies	Red	Endangered	Endangered
Pour les grannieus ajjinis	terrebling and a subspecies	Reu De d	Linuangereu	Endangered
Populus tremuloides / Maius Jusca / Carex obnupta	trembling aspen / Pacific crab apple / slough sedge	кеа		
Populus trichocarpa - Alnus rubra / Rubus spectabilis	black cottonwood - red alder / salmonberry	Blue		
Pristiloma johnsoni	Broadwhorl Tightcoil	Blue		
Progne subis	Purple Martin	Blue		
Promenetus umhilicatellus	Umbilicate Sprite	Blue		
Pronhurgen convioum	Blue grey Taildropper	Blue	Threatened	Throatopod
	Blue-gley failutopper	Blue	meateneu	Illieaterieu
Pseudotsuga menziesii - Arbutus menziesii	Douglas-fir - arbutus	Red		
Pseudotsuga menziesii / Mahonia nervosa	Douglas-fir / dull Oregon-grape	Red		
Pseudotsuga menziesii / Melica subulata	Douglas-fir / Alaska oniongrass	Red		
Psilocarphus elatior	tall woolly-heads	Red	Endangered	Endangered
Ptychoramphus aleuticus	Cassin's Auklet	Red	Special Concern	Special Concern
Durala anhulla	loaflass wintergroop	Pluo	special concern	-preda concern
	ieaness wintergreen	Blue		
Quercus garryana - Arbutus menziesii	Garry oak - arbutus	Red		
Quercus garryana / Bromus carinatus	Garry oak / California brome	Red		
Quercus garryana / Holodiscus discolor	Garry oak / oceanspray	Red		
Rana aurora	Northern Red-legged Frog	Blue	Special Concern	Special Concern
Panunculus alismifalius var alismifalius	water-plantain buttercup	Red	Endangered	Endangered
Rumancalas ansimjonas var. ansimjonas		Reu .	Endangered	Elidaligered
Ranunculus californicus	California buttercup	Red	Endangered	Endangered
Ranunculus lobbii	Lobb's water-buttercup	Red		
Recurvirostra americana	American Avocet	Blue		
Rhododendron groenlandicum / Kalmia microphylla / Sphagnum spp.	Labrador-tea / western bog-laurel / peat-mosses	Blue		
Runnia maritima Herbaceous Vegetation	heaked ditch-grass Herbaceous Vegetation	Red		
Sabuling pusilla	dwarf candwort	Red	Endongorod	Endangorod
		Reu .	Endangered	Enuangereu
Salix sitchensis - Salix lasiandra var. lasiandra / Lysichiton americanus	Sitka willow - Pacific willow / skunk cabbage	Red		
Sanicula arctopoides	bear's-foot sanicle	Red	Threatened	Threatened
Sanicula bipinnatifida	purple sanicle	Red	Threatened	Threatened
Sarcocornia pacifica - Lysimachia maritima	American glasswort - sea-milkwort	Red		
Schoenonlectus acutus Deen Marsh	hard-stemmed bulrush Deen Marsh	Blue		
	midlife view	Diuc		
scytimum cunjornicum	maine vinyi	Blue		
Scytinium platynum	batwing vinyl	Yellow	Endangered	Endangered
Scytinium polycarpum	peacock vinyl	Yellow	Special Concern	Special Concern
Selaginella wallacei / Cladina spp.	Wallace's selaginella / reindeer lichens	Blue		
Sericocarnus riaidus	white-ton aster	Blue	Special Concern	Special Concern
Sidaloaa bandarsonii	Handerson's checker mallow	Blue	opecial contern	special concern
	Henderson's checker-mailow	Blue		
Silene scouleri ssp. scouleri	coastal Scouler's catchfly	Red	Endangered	Endangered
Sisyrinchium idahoense var. segetum	Idaho blue-eyed-grass	Red		
Sorex navigator brooksi	Western Water Shrew, brooksi subspecies	Blue		
Speyeria zerene bremnerii	Zerene Fritillary, bremnerii subspecies	Red		
Sterna forsteri	Forster's Tern	Red	Data Deficient	
Summetrum vicinum	Autumn Moodowbowk	Rhuo		
Sympen and Vicinium	Angient Musselet	Diue	Canadal Com	Canadial Concerns
synthiliborumpnus antiquus	Ancient Murrelet	Blue	special concern	special Concern
Syntrichia Iaevipila	twisted oak moss	Blue	Special Concern	Special Concern
Thuja plicata / Achlys triphylla	western redcedar / vanilla-leaf	Red		
Thuja plicata / Oemleria cerasiformis	Western Redcedar / Osoberry	Red		
Thuia plicata / Polystichum munitum - Lysichiton americanus	western redcedar / sword fern - skunk cabbage	Blue		
Thuia nlicata - Decudotcuna manzierii / Europunchium oroganum	western redeedar - Douglas fir / Orogon booked more	Red		
Thuja phota (Conselections allo	western reuceuar - Douglas-III / Oregori beaked-moss	neu De d		
i nuja piicata / Symphoricarpos albus	western redcedar / common snowberry	кеа		
Tonella tenella	small-flowered tonella	Blue	Endangered	Endangered
Tramea lacerata	Black Saddlebags	Red		
Trifolium depauperatum var. depauperatum	poverty clover	Blue		
Trifolium dichotomum	Macrae's clover	Red		
Triana incore	Mondaring Tottlay	Dive		
i ringu incana	vvandering lattier	ыпе		
Iripnysaria versicolor ssp. versicolor	bearded owl-clover	Red	Endangered	Endangered
Triteleia howellii	Howell's triteleia	Red	Endangered	Endangered
Typha latifolia Marsh	common cattail Marsh	Blue		
Tyto alba	Barn Owl	Red	Threatened	Threatened
liria adao	Common Murro	Rod	meateneu	catenea
		Reu		
Urile penicillatus	Brandt's Cormorant	Red		
Uropappus lindleyi	Lindley's microseris	Red	Endangered	Endangered
Utricularia ochroleuca	ochroleucous bladderwort	Blue		
Viola howellii	Howell's violet	Red		
Viola praemorsa vor praemorsa	vellow montane violet	Rod	Endongorod	Endangered
	yenow montane violet	Reu	Engangereg	chuangereu
Woodwardia fimbriata	giant chain fern	Blue		
Zeltnera muehlenbergii	Muhlenberg's centaury	Red	Endangered	Endangered

BC Conservation Data Centre: Ecosystem Occurrence Report Shape ID: 80021

Scientific Name:	Populus trichocarpa - Alnus rubra / Rubus spectabilis	
English Name: black cottonwood - red alder / salmonberry		
Identifiers		
Occurrence ID:	10783	
Shape ID:	80021	
Element Group:	Ecological Community	
Status		
Provincial Rank:	S3	
BC List:	Blue	
Global Rank:	GNR	
Locators		
Survey Site:	REAY CREEK, SIDNEY	
Directions:		
Biogeoclimatic Unit:	CDF mm	
Ecosection:	SGI	

Occurrence Information

First Observation Date: 2007 Last Observation Date: 2015-10-06

Occurrence Data:

This middle bench floodplain forest occurrence is based on Terrestrial Ecosystem Mapping (TEM) and has been verified by a field visit. It is comprised of a young forest. This ecological community occupies approximately 4.0 ha or 44 % of the area shown.

General Description:

This occurrence is located on the floodplain of Reay Creek between Victoria Airport and the highway. The surrounding area is mostly urban, with the occurrence being a narrow strip between urban housing.

Environmental Summary:

Field data indicates the occurrence is on level, fluvial materials.

Occurrence Rank and Occurrence Rank Factors

 Rank*:
 E : Verified extant (viability not assessed)

 Note: in the case of Ecological Communities, "viability" should read as "ecological integrity".

 Rank Date:

 Rank Comments:

 Condition of Occurrence:

 4.02 ha

Landscape Context:

Version

Estimated Representation Accuracy:	Medium
Estimated Representation Accuracy Comments:	The ecological community occupies 44.4% (4.02 ha) of the mapped occurrence.
Confident that full extent is represented by Occurrence:	?
Confidence extent Definition:	Uncertain whether full extent of EO is known
Additional Inventory Needed:	Y
Inventory Comments:	The field data is from a visit to verify the element occurrence.

This element occurrence is based on available ecosystem mapping. Many factors influence the reliability of an ecosystem map. Depending on the scale of aerial images used to capture the ecosystems, very small ecosystems and some types of disturbance may not be visible and will not be mapped. If the air photos are not current, new disturbance may have occurred since the time of mapping and the inventory may not accurately represent the current state of the landscape. Other factors, such as the skill and experience of the mapper within the study area, and the field survey intensity level will also influence the reliability of the map.

Documentation

References:

Madrone Environmental Services Ltd. 2008. Terrestrial Ecosystem Mapping of the Coastal Douglas-Fir Biogeoclimatic Zone. Unpublished report prepared for Integrated Land Management Bureau (ILMB), Duncan, B.C. 123pp.

Terrestrial Ecosystem Mapping [TEM] of the Coastal Douglas-fir Biogeoclimatic Zone. 2008. Prepared for B. Zinovich, Integrated Land Management Bureau, B.C. Minist. of Agric. and Lands, Nanaimo B.C. by Madrone Environmental Services, Duncan B.C. 1:20,000 spatial data.

de Groot, A., and C.M. Cadrin. 2013. Element occurrence and element occurrence rank specifications for riparian deciduous forests and shrublands of coastal British Columbia. Unpublished document. Version January, 2013. B.C. Minist. Environ., Conservation Data Centre, Victoria, B.C. 5 pp.

Please visit the website http://www.env.gov.bc.ca/cdc/gis/eo_data_fields_06.htm for definitions of the data fields used in this occurrence report.

Suggested Citation:

B.C. Conservation Data Centre. 2014. Occurrence Report Summary, Shape ID: 80021, black cottonwood - red alder / salmonberry. B.C. Ministry of Environment. Available: http://maps.gov.bc.ca/ess/hm/cdc, (accessed Mar 16, 2022).

APPENDIX D

ProUCL Output

						•						
	General Statistics on Uncensored Data - Soil Results											
Date/Time of Computation		ProUCL 5.12	022-03-0:	3 4:19:20 PN	/							
User Selected Options												
From File												
Full Precision		Urr										
From File: KELSET_ProLICL xls												
General Statistics for Censored I	Data Set (wit	h NDs) using	Kaplan M	eier Metho	ł							
Variable	NumObs	# Missing N	lum Ds	NumNDs	% NDs	Min ND	Ma	ax ND	KM Mean	KM Var	KM SD	KM CV
Arsenic	26	0	26	0	0.00%	N/A	1	N/A	4.473	1.82	1.349	0.302
Cadmium	26	0	26	0	0.00%	N/A	I	N/A	4.313	20.46	4.524	1.049
Chromium	26	0	26	0	0.00%	N/A	ſ	N/A	51.38	480.7	21.93	0.427
Iron	26	0	26	0	0.00%	N/A	ſ	N/A	27512	15319462	3914	0.142
Lead	26	0	26	0	0.00%	N/A	ſ	N/A	29.01	333.1	18.25	0.629
Zinc	26	0	26	0	0.00%	N/A	1	N/A	155.5	8783	93.72	0.603
Sodium	20	0	20	0	0.00%	N/A	1	N/A	303.7	11358	106.6	0.351
Seneral Statistics for Raw Data Sets using Detected Data Only												
Variable	NumObs	# Missing N	/linimum	Maximum	Mean	Median	Va	r	SD	MAD/0.675	Skewness	CV
Arsenic	26	0	1.7	8	4.473	4.	.3	1.82	1.349	1.038	0.245	0.302
Cadmium	26	0	0.23	14.8	4.313	2.56	5	20.46	4.524	3.128	0.986	1.049
Chromium	26	0	17	100	51.38	45.	.5	480.7	21.93	15.57	0.677	0.427
Iron	26	0	18100	34900	27512	2755	0	15319462	3914	2595	-0.582	0.142
Lead	26	0	9.1	84.8	29.01	26.0)5	333.1	18.25	17.12	1.387	0.629
Zinc	26	0	71	464	155.5	11	.6	8783	93.72	60.79	1.911	0.603
Sodium	20	0	163	618	303.7	302.	.5	11358	106.6	104.5	1.397	0.351
Percentiles using all Detects (Ds) and Non-De	etects (NDs)									_	
Variable	NumObs	# Missing 1	0%ile	20%ile	25%ile(Q1)	50%ile(Q2)	75	%ile(Q3)	80%ile	90%ile	95%ile	99%ile
Arsenic	26	0	2.8	4	4	4.	.3	5	5	6	6	7.5
Cadmium	26	0	0.42	0.5	0.748	2.56	5	8.508	9.59	10.25	12.55	14.4
Chromium	26	0	29	36	37	45.	.5	66.25	78	80	89	98
Iron	26	0	23850	25300	26275	2755	0	29350	29400	31650	33750	34775
Lead	26	0	10.75	11.9	14.73	26.0)5	36.25	38	51.25	60.78	79.28
Zinc	26	0	78.5	85	94.5	11	.6	180.5	200	241.5	337.5	439.3
Arsenic												
Data appear Approximate Norm	al at 5% Sign	ificance Leve	el									
95% Student's-t UCL				4.925	5 95% Adjusted-CLT UCL (Chen-1995) 4.922							
Cadmium												
Assuming Normal Distribution												
95% Student's-t UCL				5.828	95% Adjust	ed-CLT UCL	(Cher	n-1995)			5.955	
Chromium												
Data appear Normal at 5% Signi	ficance Level	l		50.72	050/ 4-1		(6)	1005)			50.07	
95% Student's-t UCL				58.73	95% Adjust	ed-CLI UCL	(Cher	n-1995)			59.07	
Iron												
Data appear Normal at 5% Signi	ficance Level											
95% Student's t UCI				28823	05% Adjust		(Chor	n_1005)			28681	
95% Student 3-t OCL				20025	3570 Aujust		(Chei	11-1999)			20001	
Lead												
Data appear Approximate Norm	al at 5% Sign	ificance Leve	el									
95% Student's-t UCL				35.13	95% Adjust	ed-CLT UCL	(Cher	n-1995)			35.94	
					,			- /				
Zinc												
Data Not Normal at 5% Significa	nce Level											
95% BCA Bootstrap UCL				193.1								

		General St	atistics on l	Incensored	Data - Sedim	ent Results					
Date/Time of Computation		ProUCL 5.1	2022-03-02	2:33:56 PM	1						
User Selected Options											
From File		ProUCL_Se	dKelset.xls								
Full Precision		OFF									
From File: ProUCL_SedKelset.xls											
General Statistics for Censored Data Set (with NDs) u	sing Kaplan	Meier Met	nod							
Variable	NumObs	# Missing	Num Ds	NumNDs	% NDs	Min ND	Max ND	KM Mean	KM Var	KM SD	KM CV
Arsenic	62	0	61	1	1.61%		1 1	5.496	8.012	2.831	0.515
Cadmium	62	0	62	0	0.00%	N/A	N/A	6.387	42.73	6.537	1.024
Chromium	62	0	62	0	0.00%	N/A	N/A	51.48	760.3	27.57	0.536
Chromium Trivalent (Cr(III))	35	27	35	0	0.00%	N/A	N/A	46.14	494.5	22.24	0.482
Chromium Hexavalent (Cr(VI))	35	27	0	35	100.00%	0.	3 8	3 N/A	N/A	N/A	N/A
Lead	51	11	51	0	0.00%	N/A	N/A	20.14	222.8	. 14.93	0.741
Zinc	62	0	62	0	0.00%	N/A	N/A	203	9561	97.78	0.482
Iron	51	11	51	0	0.00%	N/A	N/A	26612	39033059	6248	0.235
General Statistics for Raw Data Sets using	Detected D	ata Only				,	.,				
Variable	NumObs	# Missing	Minimum	Maximum	Mean	Median	Var	SD	MAD/0.675	Skewness	CV
Arsenic	61	0	2	22.4	5.57	5.3	2 7.937	2.817	1.957	3.628	0.506
Cadmium	62	0	0.25	35	6.387	4.2	6 42.73	6.537	4,752	2	1.024
Chromium	62	0	14	154	51 48	42.3	5 760 3	27.57	23.5	1 329	0.536
Chromium Trivalent (Cr(III))	35	27	14	-96	46.14	4	2 494 5	5 22.24	23 72	0.647	0.482
Chromium Hexavalent (Cr(VI))	0	27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead	51	11	44	60.2	20.14	15	5 222.8	14.93	13 19	1 042	0 741
Zinc	62	0	71	502	203	17	4 9561	97.78	72 65	0.978	0.482
Iron	51	11	13100	39700	26612	2740	0 39033059	6748	7413	-0.12	0.402
Percentiles using all Detects (Ds) and Non	-Detects (N	Dc) 11	10100	33700	20012	2740	0 33033033	0240	7415	0.12	0.200
Variable	NumOhs	# Missing	10%ile	20%ile	25%ile(01)	50%ile(02)	75%ile(O3)	80%ile	90%ile	95%ile	99%ile
Arsenic	67 F2	π IVII33IIIB Ω	10/0110 2	20/0110	20/010(01)	50/mc(Q2)	6 63	6070110	7 20	0 072	14 74
Cadmium	62	0	1 001	1 1/12	1 219	1.2	6 9.09	2 10.77	12 70	16 32	20 1/
Chromium	62	0	1.001	29.2	32.4	4.2	5 67.05	5 10.77	85.9	10.32	133.0
Chromium Trivalent (Cr(III))	25	27	24	25.2	27.5	42.3	2 07.05 2 61	, , , , , ,	200.9 70 0	103.0	95.66
Chromium Heyavalent (Cr(M))	35	27	0.2	23.8	27.5	4	2 U	2 00.0	/2.2	00	95.00 Q
	55	11	5.9	6.0	0.3	15		, 21 Q	/2 1	10 /	58 15
Zinc	51	11	100 E	127.2	121.2	17	J 20.5	270.4	4J.1 2EC /	43.4 277.7	J0.1J
Iron	51	11	19200	20900	21700	27/0	4 271 0 31050	31300	3/200	36/00	38600
	51		15200	20500	21700	2740	0 51050	51500	54200	30400	50000
Arsenic											
Detected Data Not Normal at 5% Significa	ince Level										
95% BCA Bootstrap UCL				6.312	95% Bootst	rap t UCL				6.364	
Cadmium											
Data Not Normal at 5% Significance Level											
95% BCA Bootstrap UCL				7.984							
Chromium											
Data Not Normal at 5% Significance Level											
95% BCA Bootstrap UCL				57.85							
Lead											
Data Not Normal at 5% Significance Level					_						
95% BCA Bootstrap UCL				23.9							
Zinc											
Data Not Normal at 5% Significance Level											
95% BCA Bootstrap UCL				225.3							
Iron											
Data appear Normal at 5% Significance Le	evel										
95% Student's-t UCL				28078	95% Adjust	ed-CLT UCL	Chen-1995)			28035	

APPENDIX E

WLC Engagement Meeting

TECHNICAL MEMORANDUM

DATE 21 March 2023

Reference No. 22526061-009-TM-Rev0

- **TO** Lizanne Meloche and Stephanie Gregory Public Services and Procurement Canada
- FROM Alexis Fast and Blair McDonald

SUMMARY OF ENGAGEMENT MEETING WITH THE WSÁNEĆ LEADERSHIP COUNCIL TECHNICAL ADVISORY COMMITTEE RE: RISK ASSESSMENT IN KELSET, DOWNGRADIENT OF KELSET POND, BC

1.0 INTRODUCTION

WSP Canada Inc. (WSP; formerly Golder Associates Ltd. [Golder]) was retained by Public Services and Procurement Canada (PSPC), on behalf of Transport Canada, to present the results of the draft human health and ecological risk assessment (HHERA) conducted by WSP for KELSET to the WSANEC Leadership Council (WLC), describe the uncertainties in the draft HHERA, and request input into future risk assessment activities. The engagement meeting was held virtually on 19 January 2023; this technical memorandum summarizes the information presented by WSP at the meeting, the feedback received, and recommendations for further work.

This technical memorandum was prepared for Canada in accordance with the terms and conditions of the Public Works Government Services Canada (PWGSC) Contaminated Sites Risk Assessment Contract with Task Authorizations (CTA) EZ897-191436/002/VAN, dated 9 August 2019, Task Authorization (TA) 700652230 dated 20 May 2022, Amendment #1 to Task Authorization Number 700652230 dated 24 June 2022, and the Notice to Readers in Section 5.0. The scope of work was described in the workplan "Workplan and Cost Estimate—Risk Assessment Activities and Post-Remediation Monitoring in KELSET, BC" dated 19 May 2022, and in the "Request for Amendment (#1) to Task Authorization 700652230—Risk Assessment Activities and Post-Remediation Monitoring in KELSET, BC" dated 20 June 2022.

2.0 BACKGROUND

In FY2021/22, WSP was retained by PSPC, on behalf of Transport Canada, to conduct a detailed HHERA in support of risk management for KELSET (also known as Reay Creek), downgradient of KELSET Pond, in British Columbia. KELSET originates at the Victoria International Airport, which is located on federal land leased to the Victoria Airport Authority. The airport has been in operation since 1939, and has included a variety of aircraft manufacturing, electroplating, and other industrial activities operations; stormwater and groundwater influences from these industrial activities drain towards KELSET.

KELSET Pond and KELSET have been the subject of considerable investigation. Sediment remediation and habitat restoration programs were completed by PSPC for KELSET (the portion within the airport property) in 2019/20 and at KELSET Pond in 2020/21. The draft HHERA was conducted for select portions of KELSET below KELSET Pond where intrusive remediation has not been completed. The objective of the HHERA was to assess

the potential human health and ecological risks associated with the residual concentrations of airport-related contaminants in KELSET; the Study Area for the HHERA included the portions of KELSET between KELSET Pond to Patricia Bay Highway, and between Lochside Drive to Bazan Bay. The portions of KELSET that flow through privately-owned land (i.e., between Patricia Bay Highway and Lochside Drive) were not part of the assessment.

Based on current and future use of KELSET as a creek located within a forested ravine that runs through municipal parks bordered predominantly by private residential housing, the results of the draft HHERA indicated there were low risks to aquatic receptors (e.g., aquatic plants, benthic invertebrates, and fish) from the metal contaminants of concern identified in the sediment and/or surface water in KELSET, and no risks to terrestrial wildlife or humans that might use the area as an urban park. Consistent with urban park land use, a default assumption in the draft HHERA was that KELSET and its riparian areas were not being used as a source of food; however, an area of uncertainty was whether there were alternative land uses that should be evaluated (e.g., harvesting of traditional foods from or along KELSET). An additional area of uncertainty was whether there were specific ecological receptors that stakeholders and rightsholders would like to see reflected in a food chain model.

3.0 SUMMARY OF ENGAGEMENT MEETING

As a result of the uncertainties described above, WSP presented the results of the draft HHERA to the WLC Technical Advisory Committee during a virtual meeting held on 19 January 2023. In addition to presenting the objectives, methods, and results of the draft HHERA, WSP described the uncertainties with the assessment and requested input into future risk assessment activities.

3.1 Attendees

- WLC Technical Advisory Committee: William Morris (Tsartlip FN), Erik Pelkey (WLC Community Engagement Coordinator), Gordon Elliott (WLC Director of Operations), Joni Olsen (WLC Policy/Negotiations Manager), Eryn Rogers (WLC Policy and Negotiation Analyst), Laurie Whitehead (WLC Referrals Manager), Peter Evans (geographer and anthropologist; advisor to the WLC)
- Transport Canada: Eddie Uyeda
- PSPC: Lizanne Meloche, Stephanie Gregory
- **WSP**: Blair McDonald, Alexis Fast

3.2 Meeting Agenda

After introductions were made, PSPC provided a brief overview of Transport Canada's work in KELSET, and Transport Canada provided the land acknowledgement and summary of the history of contamination and remediation work conducted by Transport Canada to date. WSP (Blair McDonald) then presented an overview of the draft HHERA and its uncertainties and opened the floor for discussion.

3.3 Summary of Feedback/Questions and WSP Responses

The following summarizes the feedback/questions received from the WLC Technical Advisory Committee during the 19 January 2023 meeting.

<u>Joni Olsen</u>: The WLC are concerned about pollutants that could have been transported downstream to the mouth of the creek and the potential impacts on fish/shellfish harvesting in Bazan Bay.

<u>WSP response</u>: Sediment samples collected from the mouth of the creek were below applicable standards. By extension, WSP considers it unlikely that the metal contaminants resulting from historical operations at the airport are having a significant impact on fish/shellfish in Bazan Bay.

<u>Erik Pelkey</u>: The WLC are concerned about potential effects on species that aren't stationary, which are harvested as food items by First Nations (ducks were specifically mentioned as a food item that is hunted and consumed).

<u>WSP response</u>: Ducks weren't specifically assessed, but based on the porewater data, it is unlikely that metals in the sediment are releasing to the porewater. This result suggests the metal contaminants resulting from historical operations at the airport are not bioaccumulating into the food chain in a significant amount.

<u>Peter Evans</u>: The WLC are concerned about the potential effects on shellfish at the mouth of the creek (presently closed for harvesting by DFO); has there been testing of tissues for the metal contaminants of concern?

<u>WSP response</u>: As described above, sediment samples collected from the mouth of the creek were below applicable standards. By extension, WSP considers it unlikely that the metal contaminants resulting from historical operations at the airport are having a significant impact on fish/shellfish in Bazan Bay. As a result, WSP did not collect tissue data as part of the risk assessment.

<u>Joni Olsen</u>: The WSP risk assessment is relevant in that it helps determine who is not responsible for the shellfish/fish closures in Bazan Bay. The WLC understands the line of thought that since there are no impacts in sediment at the mouth of the creek, there are likely no effects on shellfish, but would like to see tissue data.

WSP response: Acknowledged

Laurie Whitehead: Have we considered berry picking along KELSET?

<u>WSP response</u>: Soil samples collected along the length of KELSET, downstream of KELSET Pond, were below applicable standards. As a result, WSP considers it unlikely that the metal contaminants resulting from historical operations at the airport are bioaccumulating into the terrestrial food chain (including berries) in a significant amount. An evaluation of large-scale berry harvesting was not conducted in the risk assessment.

<u>Joni Olsen</u>: The WLC is concerned with cumulative effects on food sources/food security; appreciates the work the government is doing to clean up contamination.

WSP response: Acknowledged

4.0 CONCLUSIONS AND RECOMMENDATIONS

During the engagement meeting, the WLC expressed concerns with bioaccumulation of contaminants/pollutants into food items and with cumulative effects on food sources/food security. Based on the feedback received during the meeting, the WLC Technical Advisory Committee had no concerns with the results of the draft HHERA and it is recommended that the report be finalized with no additional work.

5.0 NOTICE TO READERS

This technical memorandum was prepared for Canada in accordance with the terms and conditions of the Public Works Government Services Canada (PWGSC) Contaminated Sites Risk Assessment Contract with Task Authorizations (CTA) EZ897-191436/002/VAN, dated 9 August 2019, Task Authorization (TA) 700652230 dated 20 May 2022, and Amendment #1 to Task Authorization Number 700652230 dated 24 June 2022. The scope of work was described in the workplan "Workplan and Cost Estimate—Risk Assessment Activities and Post-Remediation Monitoring in KELSET, BC" dated 19 May 2022, and in the "Request for Amendment (#1) to Task Authorization 700652230—Risk Assessment Activities and Post-Remediation Monitoring in KELSET, BC" dated 20 June 2022.

The inferences concerning the Site conditions contained in this letter are based on information obtained during the assessment conducted by WSP personnel and are based solely on the condition of the property at the time of the site visit, as described in this technical memorandum.

This letter was prepared, based in part, on information obtained from historic information sources. In evaluating the subject Site, WSP has relied in good faith on information provided. We accept no responsibility for any deficiency or inaccuracy contained in this report as a result of our reliance on the aforementioned information.

The findings and conclusions documented in this letter have been prepared for the specific application to this project and have been developed in a manner consistent with that level of care normally exercised by environmental professionals currently practicing under similar conditions in the jurisdiction.

With respect to regulatory compliance issues, regulatory statutes are subject to interpretation. These interpretations may change over time; these should be reviewed.

If new information is discovered during future work, the conclusions of this memorandum should be re-evaluated and the letter amended, as required, prior to any reliance upon the information presented herein.

6.0 CLOSURE

We trust the information contained in this report is sufficient for your present needs. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

WSP CANADA INC.

Alexis Fast, MEDes, RPBio, PMP Project Manager, Lead Environmental Scientist

Blair McDonald, MET, RPBio, CSAP Principal, Senior Environmental Scientist

https://wsponline-my.sharepoint.com/personal/alexis_fast_wsp_com/documents/desktop/projects/2023/22526061_kelset/project work/engagement meetings/22526061-009-tm-rev0-kelset-summary of engagement meeting - 20mar_23.docx

